Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20210057
Polímeros: Ciência e Tecnologia
Original Article

Role of cellulose nanocrystals in epoxy-based nanocomposites: mechanical properties, morphology and thermal behavior

Nayra Reis do Nascimento; Ivanei Ferreira Pinheiro; Guilherme Fioravanti Alves; Lucia Helena Innocentini Mei; José Costa de Macedo Neto; Ana Rita Morales

Downloads: 1
Views: 577

Abstract

This study evaluated the influence of cellulose nanocrystals (CNC) content on the properties of epoxy nanocomposites. The CNC were obtained from microcrystalline cellulose by acid hydrolysis. 4.0, 5.5 and 7.0% of untreated CNC were incorporated into epoxy resin. Sonication was used to disperse the CNC in the resin. The thermal stability, the glass transition temperature and the degree of conversion were reduced as observed by Thermogravimetry and Differential Scanning Calorimetry, respectively. The tensile and bending modulus showed no significant improvement and the impact resistance showed a slight reduction due to the non-uniform dispersion of the CNCs, as observed by Transmission Electron Microscopy. Analysis of Scanning Electron Microscopy showed a change of the fracture mechanism of the epoxy resin: the CNCs increased the elastic modulus by reinforcement, but accelerated the fracture by acting as defects. The Halpin-Tsai model was applied to predict the elastic modulus of the epoxy/CNC system.

Keywords

cellulose nanocrystals, nanocomposites, epoxy resin

References

1 Nguyen, D. A., Lee, Y. R., Raghu, A. V., Jeong, H. M., Shin, C. M., & Kim, B. K. (2009). Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polymer International, 58(4), 412-417. http://dx.doi.org/10.1002/pi.2549.

2 Potts, J. R., Dreyer, D. R., Bielawski, C. W., & Ruoff, R. S. (2011). Graphene-based polymer nanocomposites. Polymer, 52(1), 5-25. http://dx.doi.org/10.1016/j.polymer.2010.11.042.

3 Kumar, S. K., & Krishnamoorti, R. (2010). Nanocomposites: structure, phase behavior, and properties. Annual Review of Chemical and Biomolecular Engineering, 1(1), 37-58. http://dx.doi.org/10.1146/annurev-chembioeng-073009-100856. PMid:22432572.

4 Xie, S., Zhang, X., Walcott, M. P., & Lin, H. (2018). Applications of cellulose nanocrystals: a review. Engineering and Science, 2, 4-16. http://dx.doi.org/10.30919/es.1803302.

5 Miao, C., & Hamad, W. Y. (2016). In-situ polymerized cellulose nanocrystals (CNC) poly(l-lactide) (PLLA) nanomaterials and applications in nanocomposite processing. Carbohydrate Polymers, 153, 549-558. http://dx.doi.org/10.1016/j.carbpol.2016.08.012. PMid:27561528.

6 Bonini, C., Heux, L., & Cavaillé, J.-Y. (2000). Polypropylene reinforced with cellulose whiskers. Matériaux & Techniques, 88(7-8), 55-58. http://dx.doi.org/10.1051/mattech/200088070055.

7 Yu, T., Soomro, S., Huang, F., Wei, W., Wang, B., Zhou, Z., & Hui, D. (2020). Naturally or artificially constructed nanocellulose architectures for epoxy composites: a review. Nanotechnology Reviews, 9(1), 1643-1659. http://dx.doi.org/10.1515/ntrev-2020-0116.

8 Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical Reviews, 110(6), 3479-3500. http://dx.doi.org/10.1021/cr900339w. PMid:20201500.

9 Li, S., Jasim, A., Zhao, W., Fu, L., Ullah, M. W., Shi, Z., & Yang, G. (2018). Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Materials & Manufacturing, 1, 41-49. http://dx.doi.org/10.30919/esmm5f120.

10 Cai, J., Xu, W., Liu, Y., Zhu, Z., Liu, G., Ding, W., Wang, G., Wang, H., & Luo, Y. (2019). Robust construction of flexible bacterial cellulose@Ni(OH)2 paper: toward high capacitance and sensitive H2O2 detection. Engineered Science, 5, 21-29. http://dx.doi.org/10.30919/es8d669.

11 He, Y., Chen, Q., Yang, S., Lu, C., Feng, M., Jiang, Y., Cao, G., Zhang, J., & Liu, C. (2018). Micro-crack behavior of carbon fiber reinforced Fe3O4/graphene oxide modified epoxy composites for cryogenic application. Composites. Part A, Applied Science and Manufacturing, 108, 12-22. http://dx.doi.org/10.1016/j.compositesa.2018.02.014.

12 Song, B., Wang, T., Sun, H., Liu, H., Mai, X., Wang, X., Wang, L., Wang, N., Huang, Y., & Guo, Z. (2018). Graphitic carbon nitride (g-C3N4) interfacially strengthened carbon fiber epoxy composites. Composites Science and Technology, 167, 515-521. http://dx.doi.org/10.1016/j.compscitech.2018.08.031.

13 Ma, L., Zhu, Y., Feng, P., Song, G., Huang, Y., Liu, H., Zhang, J., Fan, J., Hou, H., & Guo, Z. (2019). Reinforcing carbon fiber epoxy composites with triazine derivatives functionalized graphene oxide modified sizing agent. Composites. Part B, Engineering, 176, 107078. http://dx.doi.org/10.1016/j.compositesb.2019.107078.

14 Wu, G.-M., Liu, D., Liu, G.-F., Chen, J., Huo, S.-P., & Kong, Z.-W. (2015). Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers. Carbohydrate Polymers, 127, 229-235. http://dx.doi.org/10.1016/j.carbpol.2015.03.078. PMid:25965479.

15 Roszowska-Jarosz, M., Masiewicz, J., Kostrzewa, M., Kucharczyk, W., Zurowski, W., Kucinska-Lipka, J., Przybyłek, P. (2021). Mechanical Properties of Bio-Composites Based on Epoxy Resin and Nanocellulose Fibres. Materials, 14, 1-16. https://doi.org/10.3390/ma14133576.

16 Nissilä, T., Hietala, M., & Oksman, K. (2019). A method for preparing epoxy-cellulose nanofiber composites with anoriented structure. Composites. Part A, Applied Science and Manufacturing, 125, 105515. http://dx.doi.org/10.1016/j.compositesa.2019.105515.

17 Qin, X., Ge, W., Mei, H., Li, L., & Zheng, S. (2021). Toughness improvement of epoxy thermosets with cellulose nanocrystals. Polymer International, 70(1), 1640-1648. http://dx.doi.org/10.1002/pi.6260.

18 Yue, L., Ke, K., Amirkhosravi, M., Gray, T. G., & Manas-Zloczower, I. (2021). Catalyst-free mechanochemical recycling of biobased epoxy with cellulose nanocrystals. ACS Applied Bio Materials., 4(5), 4176-4183. http://dx.doi.org/10.1021/acsabm.0c01670.

19 Hassan, M. L., Bras, J., Hassan, E. A., Fadel, S. M., & Dufresne, A. (2012). Polycaprolactone/modified bagasse whisker nanocomposites with improved moisture-barrier and biodegradability properties. Journal of Applied Polymer Science, 125(S2), E10-E19. http://dx.doi.org/10.1002/app.36373.

20 Samir, A. S. A., Alloin, F., & Dufresne, A. (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6(2), 612-626. http://dx.doi.org/10.1021/bm0493685. PMid:15762621.

21 Omrani, A., Simon, L. C., & Rostami, A. A. (2008). Influences of cellulose nanofiber on the epoxy network formation. Materials Science and Engineering A, 490(1-2), 131-137. http://dx.doi.org/10.1016/j.msea.2008.01.012.

22 Martin, A. R., Martins, M. A., Mattoso, L. H. C., & Silva, O. R. R. F. (2009). Chemical and structural characterization of sisal fibers from Agave sisalana variety. Polímeros: Ciência e Tecnologia, 19(1), 40-46. http://dx.doi.org/10.1590/S0104-14282009000100011.

23 Ciolacu, D., Ciolacu, F., & Popa, V. I. (2011). Amorphous cellulose - structure and characterization. Cellulose Chemistry and Technology, 45(1-2), 13-21. Retrieved in 2021, October 10, from https://cellulosechemtechnol.ro/pdf/CCT1-2(2011)/p.13-21.pdf

24 Pandey, J. K., Lee, C. S., & Ahn, S.-H. (2010). Preparation and properties of bio-nanoreinforced composites from biodegradable polymer matrix and cellulose whiskers. Journal of Applied Polymer Science, 115(4), 2493-2501. http://dx.doi.org/10.1002/app.31205.

25 Rosa, M. F., Medeiros, E. S., Malmonge, J. A., Gregorski, K. S., Wood, D. F., Mattoso, L. H. C., Glenn, G., Orts, W. J., & Imam, S. H. (2010). Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 81(1), 83-92. http://dx.doi.org/10.1016/j.carbpol.2010.01.059.

26 Adel, A. M., Abd El-Wahab, Z. H., Ibrahim, A. A., & Al-Shemy, M. T. (2016). Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: physicochemical properties. Carbohydrate Polymers, 83(2), 676-687. http://dx.doi.org/10.1016/j.carbpol.2010.08.039.

27 Azeredo, H. M. C., Mattoso, L. H. C., Wood, D., Williams, T. G., Avena-Bustillos, R. J., & McHugh, T. H. (2009). Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. Journal of Food Science, 74(5), N31-N35. http://dx.doi.org/10.1111/j.1750-3841.2009.01186.x. PMid:19646052.

28 Trinh, B. M., & Mekonnen, T. (2018). Hydrophobic esterification of cellulose nanocrystals for epoxy reinforcement. Polymer, 155, 64-74. http://dx.doi.org/10.1016/j.polymer.2018.08.076.

29 Hardis, R., Jessop, J. L. P., Peters, F. E., & Kessler, M. R. (2013). Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA. Composites. Part A, Applied Science and Manufacturing, 49, 100-108. http://dx.doi.org/10.1016/j.compositesa.2013.01.021.

30 González-Garcia, F., Miguez, E., & Soares, B. G. (2005). Characterization of diglycidyl ether of bisphenol A / aliphatic polyamines systems. Polímeros: Ciência e Tecnologia, 15(4), 261-267. http://dx.doi.org/10.1590/S0104-14282005000400010.

31 Silverstein, R. M., & Bassler, G. C. (1962). Spectrometric identification of organic compounds. Journal of Chemical Education, 39(11), 546. http://dx.doi.org/10.1021/ed039p546.

32 Mandal, A., & Chakrabarty, D. (2011). Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86(3), 1291-1299. http://dx.doi.org/10.1016/j.carbpol.2011.06.030.

33 Xu, S., Girouard, N., Schueneman, G., Shofner, M. L., & Meredith, J. C. (2013). Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer, 54(24), 6589-6598. http://dx.doi.org/10.1016/j.polymer.2013.10.011.

34 Johnson, D. J., Compton, D. A. C., Cass, R. S., & Canale, P. L. (1993). The characterization of amine-activated epoxies as a function of cure by using TGA/FT-IR. Thermochimica Acta, 203, 293-308. http://dx.doi.org/10.1016/0040-6031(93)80367-J.

35 Miyagawa, H., & Drzal, L. T. (2004). Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carbon nanotubes. Polymer, 45(15), 5163-5170. http://dx.doi.org/10.1016/j.polymer.2004.05.036.

36 Tang, L., & Weder, C. (2010). Cellulose whisker/epoxy resin nanocomposites. ACS Applied Materials & Interfaces, 2(4), 1073-1080. http://dx.doi.org/10.1021/am900830h. PMid:20423128.

37 Shimazaki, Y., Miyazaki, Y., Takezawa, Y., Nogi, M., Abe, K., Ifuku, S., & Yano, H. (2007). Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromolecules, 8(9), 2976-2978. http://dx.doi.org/10.1021/bm7004998. PMid:17696397.

38 González-Garcia, F., Soares, B. G., Pita, V. J. R. R., Sánchez, R., & Rieumont, J. (2007). Mechanical properties of epoxy networks based on DGEBA and aliphatic amines. Journal of Applied Polymer Science, 106(4), 2047-2055. http://dx.doi.org/10.1002/app.24895.

39 CSTJ Materiaux Composites. (2021, October 10). Product information: D.E.R.™ 331™. Retrieved in 2021, October 10, from https://cstjmateriauxcomposites.files.wordpress.com/2017/11/der331.pdf

40 Kumar, S., Falzon, B. G., Kun, J., Wilson, E., Graninger, G., & Hawkins, S. C. (2020). High performance multiscale glass fibre epoxy composites integrated with cellulose nanocrystals for advanced structural applications. Composites. Part A, Applied Science and Manufacturing, 131, 105801. http://dx.doi.org/10.1016/j.compositesa.2020.105801.

41 Peng, S. X., Shrestha, S., Yoo, Y., & Youngblood, J. P. (2017). Enhanced dispersion and properties of a two-component epoxy nanocomposite using surface modified cellulose nanocrystals. Polymer, 112, 359-368. http://dx.doi.org/10.1016/j.polymer.2017.02.016.

42 Saba, N., Mohammad, F., Pervaiz, M., Jawaid, M., Alothman, O. Y., & Sain, M. (2017). Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites. International Journal of Biological Macromolecules, 97, 190-200. http://dx.doi.org/10.1016/j.ijbiomac.2017.01.029. PMid:28082223.

43 Krishnamoorti, R., Ren, J., & Silva, A. S. (2001). Shear response of layered silicate nanocomposites. The Journal of Chemical Physics, 114(11), 4968-4973. http://dx.doi.org/10.1063/1.1345908.

44 Coleman, J. N., Khan, U., Blau, W. J., & Gun’ko, Y. K. (2006). Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon, 44(9), 1624-1652. http://dx.doi.org/10.1016/j.carbon.2006.02.038.

45 El Miri, N., Abdelouahdi, K., Barakat, A., Zahouily, M., Fihri, A., Solhy, A., & El Achaby, M. (2015). Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydrate Polymers, 129, 156-167. http://dx.doi.org/10.1016/j.carbpol.2015.04.051. PMid:26050901.

46 Laghaei, R., Fashandi, H., Hejazi, S. M., Shaghaghi, S., & Shamaei-Kashani, A. (2021). Enhancing mechanical properties of biaxial E-glass fabric/epoxy composite using cellulose nanocrystals: impact of mixing medium. Journal of Composite Materials, 55(24), 3325-3343. http://dx.doi.org/10.1177/00219983211013388.

47 Qi, B., Zhang, Q. X., Bannister, M., & Mai, Y.-W. (2006). Investigation of the mechanical properties of DGEBA-based epoxy resin with nanoclay additives. Composite Structures, 75(1-4), 514-519. http://dx.doi.org/10.1016/j.compstruct.2006.04.032.

48 Blanco, I., Cicala, G., Costa, M., & Recca, A. (2006). Development of an epoxy system characterized by low water absorption and high thermomechanical performances. Journal of Applied Polymer Science, 100(6), 4880-4887. http://dx.doi.org/10.1002/app.23276.

49 Asaro, L., Seoane, I. T., Fasce, L. A., Cyras, V. P., & Manfredi, L. B. (2019). Development of low environmental impact protective coatings based on a furan resin and cellulose nanocrystals. Progress in Organic Coatings, 133, 229-236. http://dx.doi.org/10.1016/j.porgcoat.2019.04.035.

50 Zhang, Y., Song, P., Liu, H., Li, Q., & Fu, S. (2016). Morphology, healing and mechanical performance of nanofibrillated cellulose reinforced poly (ε-caprolactone)/epoxy. Composites Science and Technology, 125, 62-70. http://dx.doi.org/10.1016/j.compscitech.2016.01.008.

51 Alamri, H., & Low, I. M. (2012). Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites. Polymer Testing, 31(5), 620-628. http://dx.doi.org/10.1016/j.polymertesting.2012.04.002.

52 Gonçalves, J. A. V., Campos, D. A. T., Oliveira, G. J., Rosa, M. L. S., & Macêdo, M. A. (2014). Mechanical properties of epoxy resin based on granite stone powder from the Sergipe Fold-and-thrust belt composites. Materials Research, 17(4), 878-887. http://dx.doi.org/10.1590/S1516-14392014005000100.

53 Dadfar, M. F., & Ghadami, F. (2013). Effect of rubber modification on fracture toughness properties of glass reinforced hot cured epoxy composites. Materials & Design, 47, 16-20. http://dx.doi.org/10.1016/j.matdes.2012.12.035.

54 Quan, D., & Ivankovic, A. (2015). Effect of core-shell rubber (CSR) nano-particles on mechanical properties and fracture toughness of an epoxy polymer. Polymer, 66, 16-28. http://dx.doi.org/10.1016/j.polymer.2015.04.002.

55 Lahiji, R. R., Xu, X., Reifenberger, R., Raman, A., Rudie, A., & Moon, R. J. (2010). Atomic force microscopy characterization of cellulose nanocrystals. Langmuir, 26(6), 4480-4488. http://dx.doi.org/10.1021/la903111j. PMid:20055370.
 

61eaee92a953954a926db093 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections