Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Effect of carboxymethylcellulose on colloidal properties of calcite suspensions in drilling fluids

Keila Regina Santana Fagundes; Railson Carlos da Souza Luz; Fabio Pereira Fagundes; Rosangela de Carvalho Balaban

Downloads: 1
Views: 1286


Abstract: Drilling fluids are multicomponent systems used to aid the removal of cuttings from a borehole, and subject to a number of requirements to ensure a safe drilling operation. One of the most important is to form a low permeability cake on the walls of the hole penetrated by the bit, to avoid excessive filtrate loss. To that end, carboxymethylcellulose (CMC) associated with calcite (CaCO3) can be used. In this paper, the effect of carboxymethylcellulose on the colloidal properties of calcite suspensions in brine was systematically evaluated by rheological properties, filtrate volume and zeta potential. Higher viscosity fluids, lower filtrate loss and less negative zeta potential were obtained using small calcite particles with wide size distribution and CMC with high average molecular weight (Mw) and low average degree of substitution (DS), highlighting the importance of effective interactions between CMC and calcite to improve drilling fluid properties.


calcite, CaCO3 , CMC, drilling fluids, filtrate loss


Caraschi, J. C., & Campana, S. P. F. (1999). Influência do grau de substituição e da distribuição de substituintes sobre as propriedades de equilíbrio de carboximetilcelulose em solução aquosa. Polímeros: Ciência e Tecnologia, 9(2), 70-77. http://dx.doi.org/10.1590/S0104-14281999000200015.

Antti, G., Pentti, P., & Hanna, K. (2008). Ultrasonic degradation of aqueous carboxymethylcellulose: effect of viscosity, molecular mass, and concentration. Ultrasonics Sonochemistry , 15(4), 644-648. http://dx.doi.org/10.1016/j.ultsonch.2007.09.005. PMid:17986397.

Britto, D., & Assis, O. B. G. (2009). Thermal degradation of carboxymethylcellulose in different salty forms. Thermochimica Acta, 494(1-2), 115-122. http://dx.doi.org/10.1016/j.tca.2009.04.028.

Siqueira, E. J., Brochier Salon, M.-C., & Mauret, E. (2015). The effects of sodium chloride (NaCl) and residues of cellulosic fibres derived from sodium carboxymethylcellulose (NaCMC) synthesis on thermal and mechanical properties of CMC films. Industrial Crops and Products, 72, 87-96. http://dx.doi.org/10.1016/j.indcrop.2015.01.017.

Wang, W., & Wang, A. (2010). Nanocomposite of carboxymethyl cellulose and attapulgite as a novel pH-sensitive superabsorbent: Synthesis, characterization and properties. Carbohydrate Polymers, 82(1), 83-91. http://dx.doi.org/10.1016/j.carbpol.2010.04.026.

Grządka, E. (2011). Competitive adsorption in the system: carboxymethylcellulose/surfactant/electrolyte/Al 2O3. Cellulose, 18(2), 291-308. http://dx.doi.org/10.1007/s10570-010-9489-4.

Ueno, T., Yokota, S., Kitaoka, T., & Wariishi, H. (2007). Conformational changes in single carboxymethylcellulose chains on a highly oriented pyrolytic graphite surface under different salt conditions. Carbohydrate Research, 342(7), 954-960. http://dx.doi.org/10.1016/j.carres.2007.01.017. PMid:17316582.

Gibis, M., Schuh, V., Allard, K., & Weiss, J. (2017). Influence of molecular weight and degree of substitution of various carboxymethyl celluloses on unheated and heated emulsion-type sausage models. Carbohydrate Polymers, 159, 76-85. http://dx.doi.org/10.1016/j.carbpol.2016.12.012. PMid:28038756.

Li, Z., Wang, Y., Pei, Y., Xiong, W., Xu, W., Li, B., & Li, J. (2017). Effect of substitution degree on carboxymethylcellulose interaction with lysozyme. Food Hydrocolloids , 62, 222-229. http://dx.doi.org/10.1016/j.foodhyd.2016.07.020.

Mohammadi, M., Sadeghnia, N., Azizi, M., Neyestani, T., & Mortazavian, A. M. (2014). Development of gluten-free flat bread using hydrocolloids: Xanthan and CMC. Journal of Industrial and Engineering Chemistry, 20(4), 1812-1818. http://dx.doi.org/10.1016/j.jiec.2013.08.035.

Wahid, R., Holt, R., Hjorth, R., & Scorza, F. B. (2016). Chemistry, manufacturing and control (CMC) and clinical trial technical support for influenza vaccine manufacturers. Vaccine, 34(45), 5430-5435. http://dx.doi.org/10.1016/j.vaccine.2016.07.046. PMid:27484011.

Ernsting, M. J., Tang, W. L., Maccallum, N. W., & Li, S. D. (2012). Preclinical pharmacokinetic, biodistribution, and anti-cancer efficacy studies of a docetaxel-carboxymethylcellulose nanoparticle in mouse models. Biomaterials, 33(5), 1445-1454. http://dx.doi.org/10.1016/j.biomaterials.2011.10.061. PMid:22079003.

Seid, K. A., Badot, J. C., Dubrunfaut, O., Levasseur, S., Guyomard, D., & Lestriez, B. (2012). Influence of the carboxymethyl cellulose binder on the multiscale electronic transport in carbon-LiFePO4 nanocomposites. Journal of Materials Chemistry , 22(45), 24057-24066. http://dx.doi.org/10.1039/c2jm34964g.

Zhang, L., Sun, H., Han, B., Peng, L., Ning, F., Jiang, G., & Chehotkin, V. F. (2016). Effect of shearing actions on the rheological properties and mesostructures of CMC, PVP and CMC + PVP aqueous solutions as simple water-based drilling fluids for gas hydrate drilling. Journal of Unconventional Oil and Gas Resources, 14, 86-98. http://dx.doi.org/10.1016/j.juogr.2016.02.002.

Luz, R. C. S., Fagundes, F. P., & Balaban, R. C. (2017). Water-based drilling fluids: the contribution of xanthan gum and carboxymethylcellulose on filtration control. Chemical Papers, 71(12), 2365-2373. http://dx.doi.org/10.1007/s11696-017-0231-7.

Backfolk, K., Lagerge, S., Rosenholm, J. B., & Eklund, D. (2002). Aspects on the Interaction between Sodium Carboxymethylcellulose and Calcium Carbonate and the Relationship to Specific Site Adsorption. Journal of Colloid and Interface Science, 248(1), 5-12. http://dx.doi.org/10.1006/jcis.2001.8195. PMid:16290496.

Tso, C.-P., & Shih, Y.-H. (2017). The influence of carboxymethylcellulose (CMC) on the reactivity of Fe NPs toward decabrominated diphenyl ether: The Ni doping, temperature, pH, and anion effects. Journal of Hazardous Materials, 322(Pt A), 145-151. http://dx.doi.org/10.1016/j.jhazmat.2016.03.082. PMid:27083057.

Beaussart, A., Mierczynska-Vasilev, A., & Beattie, D. A. (2010). Evolution of carboxymethyl cellulose layer morphology on hydrophobic mineral surfaces: Variation of polymer concentration and ionic strength. Journal of Colloid and Interface Science, 346(2), 303-310. http://dx.doi.org/10.1016/j.jcis.2010.03.008. PMid:20347097.

Laskowski, J. S., Liu, Q., & O’Connor, C. T. (2007). Current understanding of the mechanism of polysaccharide adsorption at the mineral/aqueous solution interface. International Journal of Mineral Processing, 84(1-4), 59-68. http://dx.doi.org/10.1016/j.minpro.2007.03.006.

Moyo, F., Tandlich, R., Wilhelmi, B. S., & Balaz, S. (2014). Sorption of Hydrophobic Organic Compounds on Natural Sorbents and Organoclays from Aqueous and Non-Aqueous Solutions: A Mini-Review. International Journal of Environmental Research and Public Health , 11(5), 5020-5048. http://dx.doi.org/10.3390/ijerph110505020. PMid:24821385.

Ganbaatar, N., Imai, K., Yano, T., & Hara, M. (2017). Surface force analysis of glycine adsorption on different crystal surfaces of titanium dioxide (TiO2). Nano Convergence , 4(1), 38. http://dx.doi.org/10.1186/s40580-017-0125-y. PMid:29264108.

Liu, Q., Zhang, Y., & Laskowski, J. S. (2000). The adsorption of polysaccharides onto mineral surfaces: an acid/base interaction. International Journal of Mineral Processing, 60(3-4), 229-245. http://dx.doi.org/10.1016/S0301-7516(00)00018-1.

Wiśniewska, M., Urban, T., Grządka, E., Zarko, V. I., & Gun’ko, V. M. (2014). Comparison of adsorption affinity of polyacrylic acid for surfaces of mixed silica–alumina. Colloid & Polymer Science, 292(3), 699-705. http://dx.doi.org/10.1007/s00396-013-3103-x. PMid:24610970.

American Petroleum Institute – API. (1997). Specification for oil-well drilling fluid materials. Dallas: API.

Shenoy, A. V. (1999). Rheology of filled polymer systems. Dordrecht: Springer. doi:http://dx.doi.org/10.1007/978-94-015-9213-0

Shaheen, E. I. (1972). Rheological study of viscosities and pipeline flow of concentrated slurries. Powder Technology, 5(4), 245-256. http://dx.doi.org/10.1016/0032-5910(72)80027-5.

Darley, H. C. H., & Gray, G. R. (1988). Composition and properties of drilling and completion fluids. Houston: Gulf Publishing Company.

Somasundaran, P., & Agar, G. E. (1967). The zero point of charge of calcite. Journal of Colloid and Interface Science, 24(4), 433-440. http://dx.doi.org/10.1016/0021-9797(67)90241-X.

Wang, J., & Somasundaran, P. (2005). Adsorption and conformation of carboxymethyl cellulose at solid–liquid interfaces using spectroscopic, AFM and allied techniques. Journal of Colloid and Interface Science, 291(1), 75-83. http://dx.doi.org/10.1016/j.jcis.2005.04.095. PMid:15907862.

Atkin, R., Craig, V. S. J., Wanless, E. J., & Biggs, S. (2003). Mechanism of cationic surfactant adsorption at the solid-aqueous interface. Journal of Colloid and Interface Science , 103(3), 219-304. http://dx.doi.org/10.1016/S0001-8686(03)00002-2. PMid:12781966.

5bb671ef0e88255d6dbd3c0b polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections