Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Nanofibers of gelatin and polivinyl-alcohol-chitosan for wound dressing application: fabrication and characterization

Paola Campa-Siqueiros; Tomás Jesús Madera-Santana; Jesús Fernando Ayala-Zavala; Jaime López-Cervantes; María Mónica Castillo-Ortega; Pedro Jesús Herrera-Franco

Downloads: 1
Views: 314


Electrospun nanofibers from gelatin (G), chitosan (CS), and chitosan-polyvinyl alcohol (CS-PVA) were developed by electrospinning process. Mechanical properties were determined by the tensile test, the elastic modulus values of the nanofibers were G (15.418-34.34 MPa) and CS-PVA (17.44-126.427 MPa). The morphological characterization by SEM revealed that the systems with 15% G and 6% CS-PVA showed morphological homogeneity. Structural characterization by FTIR indicated an interaction among some functional groups of the component. Thermal analysis by DSC and TGA showed degradation temperatures for G (330 °C), CS (210 °C to 370 °C), and PVA (310 °C to 420 °C). The contact angles values denoted the hydrophilic nature of the material. Finally, the antimicrobial assay proved that both 15% G and 7% PVA on the CS-PVA system presented the best antimicrobial effect. The results indicate that the electrospun nanofibers fabricated with G or CS-PVA can be used as wound healing dressings.


chitosan, electrospinning, gelatin, PVA, wound dressing


1 Zarrintaj, P., Moghaddam, A. S., Manouchehri, S., Atoufi, Z., Amiri, A., Amirkhani, M. A., Nilforoushzadeh, M. A., Saeb, M. R., Hamblin, M. R., & Mozafari, M. (2017). Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine, 12(19), 2403-2422. http://dx.doi.org/10.2217/nnm-2017-0173. PMid:28868968.

2 Escárcega-Galaz, A. A., Cruz-Mercado, J. L. D. L., López-Cervantes, J., Sánchez-Machado, D. I., Brito-Zurita, O. R., & Ornelas-Aguirre, J. M. (2018). Chitosan treatment for skin ulcers associated with diabetes. Saudi Journal of Biological Sciences, 25(1), 130-135. http://dx.doi.org/10.1016/j.sjbs.2017.03.017. PMid:29379369.

3 Liu, H., Chenyu, W., Chen, L., Yanguo, Q., Zhonghan, W., Fan, Y., Zuhao, L., & Jincheng, W. (2018). A functional chitosan-based hydrogel as a wound dress and in drug delivery system in the treatment of wound healing. Royal Society of Chemistry Advances, 8(14), 7533-7549. http://dx.doi.org/10.1039/C7RA13510F.

4 Hu, J., Song, Y., Zhang, C., Huang, W., Chen, A., He, H., Zhang, S., Chen, Y., Tu, C., Liu, J., Xuan, X., Chang, Y., Zheng, J., & Wu, J. (2020). Highly aligned electrospun collagen/polycaprolactone surgical sutures with sustained release of growth factors for wound regeneration. ACS Applied Bio Materials, 3(2), 965-976. http://dx.doi.org/10.1021/acsabm.9b01000.

5 Moura, L. I., Días, A., Carvalho, E., & De Sousa, H. (2013). Recent advances on the development of wound dressings for diabetic foot ulcer treatment: a review. Acta Biomaterialia, 9(7), 7093-7114. http://dx.doi.org/10.1016/j.actbio.2013.03.033. PMid:23542233.

6 Tellechea, A., Leal, E., Veves, A., & Carvalho, E. (2009). Inflammatory and angiogenic abnormalities in diabetic wound healing: role of neuropeptides and therapeutic perspectives. The Open Circulation & Vascular Journal, 3(1), 43-55. http://dx.doi.org/10.2174/1874382601003010043.

7 Periayah, M. H., Halim, A. S., Saad, A. Z., Yaacob, N. S., Hussein, A. R., Karim, F. A., Rashid, A. H., & Ujang, Z. (2015). Chitosan scaffold enhances growth factor release in wound healing in Von Willebrand disease. International Journal of Clinical and Experimental Medicine, 8(9), 15611-15620. PMid:26629055.

8 Rinaudo, M. (2011). Chitin and chitosan: properties and applications. Progress in Polymer Science, 38(7), 603-632. http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001.

9 Raafat, D., Von Bargen, K., Haas, A., & Sahl, H.-G. (2008). Insights into the mode if action of chitosan as an antibacterial compound. Applied and Environmental Microbiology, 74(12), 3764-3773. http://dx.doi.org/10.1128/AEM.00453-08. PMid:18456858.

10 Li, Z., Yang, X., Song, X., Ma, H., & Zhang, P. (2016). Chitosan oligosaccharide reduces propofol requirements and propofol-related side effects. Marine Drugs, 14(12), 234. http://dx.doi.org/10.3390/md14120234. PMid:28009824.

11 Mohebbi, S., Nezhad, M. N., Zarrintaj, P., Jafari, S. H., Gholizadeh, S. S., Saeb, M. R., & Mozafari, M. (2019). Chitosan in biomedical engineering: a critical review. Current Stem Cell Research & Therapy, 14(2), 93-116. http://dx.doi.org/10.2174/1574888X13666180912142028. PMid:30207244.

12 Ueno, H., Nakamura, F., Murakami, M., Okumura, M., Kadosawa, T., & Fujinaga, T. (2001). Evaluation effects of chitosan for the extracellular matrix production by fibroblasts and the growth factors production by macrophages. Biomaterials, 22(15), 2125-2130. http://dx.doi.org/10.1016/S0142-9612(00)00401-4. PMid:11432592.

13 Howling, G. I., Dettmar, P. W., Goddard, P. A., Hampson, F. C., Dornish, M., & Wood, E. J. (2001). The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials, 22(22), 2959-2966. http://dx.doi.org/10.1016/S0142-9612(01)00042-4. PMid:11575470.

14 Sandri, G., Rossi, S., Bonferoni, M. C., Caramella, C., & Ferrari, F. (2020). Electrospinning technologies in wound dressing applications. In J. Boateng (Ed.), Therapeutic dressings and wound healing applications (1st ed., pp. 315-336). Hoboken: Wiley. http://dx.doi.org/10.1002/9781119433316.ch14.

15 Ramakrishna, S., Fujihara, K., Teo, W. E., Lim, T. C., & Ma, Z. (2005). An introduction to electrospinning and nanofibers. Singapur: World Scientific Publishing.

16 Wang, L., Yang, H., Hou, J., Zhang, W., Xiang, C., & Li, L. (2017). Effect of the electrical conductivity of core solutions on the morphology and structure of core-shell CA-PCL/CS Nanofibers. New Journal of Chemistry, 41(24), 15072-15078. http://dx.doi.org/10.1039/C7NJ02805A.

17 Khajavi, R., & Abbasipour, M. (2012). Electrospinning as a versatile method for fabricating core/shell, hollow and porous nanofibers. Scientia Iranica, 19(6), 2029-2034. http://dx.doi.org/10.1016/j.scient.2012.10.037.

18 Bonzani, I., George, J., & Stevens, M. (2006). Novel materials for bone and cartilage regeneration. Current Opinion in Chemical Biology, 10(6), 568-575. http://dx.doi.org/10.1016/j.cbpa.2006.09.009. PMid:17011226.

19 Baker, B. M., Gee, A. O., Metter, R. B., Nathan, A. S., Marklein, R. A., Burdick, J. A., & Mauck, R. L. (2008). The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials, 29(15), 2348-2358. http://dx.doi.org/10.1016/j.biomaterials.2008.01.032. PMid:18313138.

20 Kenawy, R., Bowlin, G. L., Mansfield, K., Layman, J., Simpson, D. G., Sanders, E. H., & Wnek, G. E. (2002). Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinyl acetate), poly(lactic acid), and a blend. Journal of Controlled Release, 81(1-2), 57-64. http://dx.doi.org/10.1016/S0168-3659(02)00041-X. PMid:11992678.

21 Bagheri, B., Zarrintaj, P., Samadi, A., Zarrintaj, R., Ganjali, M. R., Saeb, M. R., Mozafari, M., Park, O. O., & Kim, Y. C. (2020). Tissue engineering with electrospun electro-responsive chitosan-aniline oligomer/polyvinyl alcohol. International Journal of Biological Macromolecules, 147, 160-169. http://dx.doi.org/10.1016/j.ijbiomac.2019.12.264. PMid:31904459.

22 Boateng, J., & Catanzano, O. (2015). Advanced therapeutic dressings for effective wound healing: a review. Journal of Pharmaceutical Sciences, 104(11), 3653-3680. http://dx.doi.org/10.1002/jps.24610. PMid:26308473.

23 Kotatha, D., Hirata, M., Ogino, M., Uchida, S., Ishikawa, M., Furuike, T., & Tamura, H. (2019). Preparation and characterization of electrospun gelatin nanofibers for use as nonaqueous electrolyte in electric double-layer capacitor. Journal of Nanotechnology, 10, 1-11. http://dx.doi.org/10.1155/2019/2501039.

24 Aramwit, P., Jaichawa, N., Ratanavaraporn, J., & Srichana, T. (2015). A comparative study of type A and type B gelatin nanoparticles as the controlled release carriers for different model compounds. Materials Express, 5(3), 241-248. http://dx.doi.org/10.1166/mex.2015.1233.

25 Wang, X., Ding, B., & Li, B. (2013). Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 16(6), 229-241. http://dx.doi.org/10.1016/j.mattod.2013.06.005. PMid:25125992.

26 Kriegel, C., Kit, K. M., McClements, D. J., & Weiss, J. (2009). Electrospinning of chitosan-poly(ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions. Polymer, 50(1), 189-200. http://dx.doi.org/10.1016/j.polymer.2008.09.041.

27 Chen, J. P., Chang, G. Y., & Chen, J. K. (2008). Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 313, 183-188. http://dx.doi.org/10.1016/j.colsurfa.2007.04.129.

28 Chong, E. J., Phan, T. T., Lim, I. J., Zhang, Y. Z., Bay, B. H., Ramakrishna, S., & Lim, C. T. (2007). Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomaterialia, 3(3), 321-330. http://dx.doi.org/10.1016/j.actbio.2007.01.002. PMid:17321811.

29 Yousefi, A., Aliyeh, H. Z., Khorasani, S. N., & Abdolmaleki, A. (2017). Optimization and characterization of electrospun chitosan/poly(vinyl alcohol) nanofibers as a phenol adsorbent via response surface methodology: optimization of Cs/PVA electrospun nanofibers as adsorbent via RSM. Polymers for Advanced Technologies, 28(12), 1872-1878. http://dx.doi.org/10.1002/pat.4075.

30 Alavarse, A. C., Waitman, F., Colque, J. T., Moura da Silva, V., Prieto, T., Venancio, E. C., & Bonvent, J. J. (2017). Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing. Materials Science and Engineering C, 77, 271-281. http://dx.doi.org/10.1016/j.msec.2017.03.199. PMid:28532030.

31 Okutan, N., Terzi, P., & Altay, F. (2014). Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids, 39, 19-26. http://dx.doi.org/10.1016/j.foodhyd.2013.12.022.

32 Ruiz-Ruiz, J. C., Ramon-Sierra, J. M., Arias-Argaez, C., Magaña-Ortiz, D., & Ortiz-Vázquez, E. (2017). Antibacterial activity of proteins extracted from the pulp of wild edible fruit of Bromelia pinguin L. International Journal of Food Properties, 20(1), 220-230. http://dx.doi.org/10.1080/10942912.2016.1154572.

33 Horsfall, G. A. (1982). Factors influencing the daylight photodegradation of Nylon. Textile Research Journal, 52(3), 197-205. http://dx.doi.org/10.1177/004051758205200307.

34 Retting, M. K., & Ah-Hen, K. (2014). El color de los alimentos un criterio de calidad medible. Agro Sur, 42(2), 2-7. http://dx.doi.org/10.4206/agrosur.2014.v42n2-07.

35 Maskan, M. (2001). Kinetics of color change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 169-175. http://dx.doi.org/10.1016/S0260-8774(00)00154-0.

36 Duconseille, A., Astruc, T., Quintana, N., Meersman, F., & Sante-Lhoutellier, V. (2015). Gelatin structure and composition linked to hard capsule dissolution: a review. Food Hydrocolloids, 43, 360-376. http://dx.doi.org/10.1016/j.foodhyd.2014.06.006.

37 Tarus, B., Fadel, N., Al-Oufy, A., & El-Messiry, M. (2016). Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats. Alexandria Engineering Journal, 55(3), 2975-2984. http://dx.doi.org/10.1016/j.aej.2016.04.025.

38 Ji, L., Qiao, W., Zhang, Y., Wu, H., Miao, S., Cheng, Z., Gong, Q., Liang, J., & Zhu, A. (2017). A gelatin composite scaffold strengthened by drug-loaded halloysite nanotubes. Materials Science and Engineering C, 78, 362-369. http://dx.doi.org/10.1016/j.msec.2017.04.070. PMid:28575996.

39 Alhosseini, S. N., Moztarzadeh, F., Mozafari, M., Asgari, S., Dodel, M., Samadikuchaksaraei, A., Kargozar, S., & Jalali, N. (2012). Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. International Journal of Nanomedicine, 7, 25-34. http://dx.doi.org/10.2147/IJN.S25376. PMid:22275820.

40 Martínez-Camacho, A. P., Cortez-Rocha, M. O., Graciano-Verdugo, A. Z., Rodríguez-Félix, F., Castillo-Ortega, M. M., Burgos-Hernández, A., Ezquerra-Brauer, J. M., & Plascencia-Jatomea, M. (2013). Extruded films of blended chitosan, low density polyethylene and ethylene acrylic acid. Carbohydrate Polymers, 91(2), 666-674. http://dx.doi.org/10.1016/j.carbpol.2012.08.076. PMid:23121962.

41 Bonilla, J., Fortunati, E., Atarés, L., Chiralt, A., & Kenny, J. M. (2014). Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocolloids, 35, 463-470. http://dx.doi.org/10.1016/j.foodhyd.2013.07.002.

42 Çay, A., Miraftab, M., & Kumbasar, E. P. A. (2014). Characterization and swelling performance of physically stabilized electrospun poly(vinyl alcohol)/chitosan nanofibers. European Polymer Journal, 61, 253-262. http://dx.doi.org/10.1016/j.eurpolymj.2014.10.017.

43 Liu, H., Du, Y., Wang, X., & Sun, L. (2004). Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology, 95(2), 147-155. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.01.022. PMid:15282127.

44 Agrawal, P., & Pramanik, K. (2016). Chitosan-poly(vinyl alcohol) nanofibers by free surface electrospinning for tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 13(5), 485-497. http://dx.doi.org/10.1007/s13770-016-9092-3. PMid:30603430.

45 Verlee, A., Mincke, S., & Stevens, C. V. (2017). Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydrate Polymers, 164, 268-283. http://dx.doi.org/10.1016/j.carbpol.2017.02.001. PMid:28325326.

46 Goy, R. C., Britto, D. D., & Assis, O. B. G. (2009). A review of the antimicrobial activity of chitosan. Polímeros: Ciência e Tecnologia, 19(3), 241-247. http://dx.doi.org/10.1590/S0104-14282009000300013.

47 Xia, G., Kohler, T., & Peschel, A. (2010). The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. International Journal of Medical Microbiology, 300(2-3), 148-154. http://dx.doi.org/10.1016/j.ijmm.2009.10.001. PMid:19896895.

5f10463c0e88252c46e52f61 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections