Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Investigating the influence of conduit residues on polyurethane plates

Magnago, Rachel Faverzani; Müller, Nicolli Dayane; Martins, Mayara; Silva, Heloisa Regina Turatti; Egert, Paola; Silva, Luciano

Downloads: 0
Views: 812


Converting waste into a product similar to the original one or into another useful product is to save energy, protect natural resources, and bring back to the production cycle what was discarded. In that direction, new polyurethane-based composites have been developed by incorporating 5%, 10%, 15%, and 20% PVC conduit discarded by the construction industry. The objective of this study was to investigate the interaction between the phases of waste incorporation and the effect upon the new material properties. The samples were produced by the polycondensation process. Microstructural analysis revealed a reduction in pore size across the polymer matrix. However, there were no changes in thermal insulation, water absorption, compressive strength, and burning rate tests and in the thermogravimetric analysis and differential scanning calorimetry. The results from this study showed that the replacement of raw material by waste did not affect its properties.


conduit, insulation, polyurethane, residue, thermal.


1. Wang, S., Chen, H., & Zhang, L. (2014). Thermal decomposition kinetics of rigid polyurethane foam and ignition risk by a hot particle. Journal of Applied Polymer Science, 131(4), 39359-39368. http://dx.doi.org/10.1002/app.39359.

2. Mancini, S. D., Darbello, S. M., Schwartzman, J. A. S., Kagohara, D. A., Nogueira, A. R., Keiroglo, R. C., Franco, C. S., Mantovani, V. A., & Wiebeck, H. (2007). Caracterização dos Resíduos da Construção Civil de Sorocaba-SP com Ênfase em Plásticos. In Anais do 9º Congresso Brasileiro de Polímeros (pp. 1-9). Campina Grande: IPEN.

3. Zhang, X.-L., Duan, H.-J., Yan, D.-X., Kang, L.-Q., Zhang, W.-Q., Tang, J.-H., & Li, Z.-M. (2015). A facile strategy to fabricate microencapsulated expandable graphite as a flame-retardant for rigid polyurethane foams. Journal of Applied Polymer Science, 42364, 1-9. http://dx.doi.org/10.1002/app.42364.

4. Xi, W., Qian, L., Chen, Y., Wang, J., & Liu, X. (2015). Addition flame-retardante behaviors of expandable graphite and [bis(2-hydroxyethyl)amino]-methyl-phosphonic acid dimethyl ester in rigid polyurethane foams. Polymer Degradation & Stability, 122, 36-43. http://dx.doi.org/10.1016/j.polymdegradstab.2015.10.013.

5. Pellizzi, E., Lattuati-Derieux, A., Lavédrine, B., & Cheradame, H. (2014). Degradation of polyurethane ester foam artifacts: chemical properties, mechanical properties and comparison between accelerated and natural degradation. Polymer Degradation & Stability, 107, 255-261. http://dx.doi.org/10.1016/j.polymdegradstab.2013.12.018.

6. Jakubowicz, I., Yarahmadi, N., & Gevert, T. (1999). Effects of accelerated and natural ageing on plasticized polyvinyl chloride (PVC). Polymer Degradation & Stability, 66(3), 415-421. http://dx.doi.org/10.1016/S0141-3910(99)00094-4.

7. Toldy, A., Harakály, G., Szolnoki, B., Zimonyi, E., & Marosi, G. (2012). Flame retardancy of thermoplastics polyurethanes. Polymer Degradation & Stability, 97(12), 2524-2530. http://dx.doi.org/10.1016/j.polymdegradstab.2012.07.015.

8. Singh, H., & Jain, A. K. (2008). Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: a comprehensive review. Journal of Applied Polymer Science, 111, 1115-1143. http://dx.doi.org/10.1002/app.29131.

9. Resolução CONAMA nº 307, de 5 de julho de 2002. (2002, 17 july). Estabelece diretrizes, critérios e procedimentos para a gestão dos resíduos da construção civil. Diário Oficial da República Federativa do Brasil, Brasília. Retrieved in 13 May 2016, from http://www.mma.gov.br/port/conama/

10. Associação Brasileira de Normas Técnicas – ABNT. (2008). ABNT NBR 15465: requisitos de desempenho para sistemas de eletrodutos plásticos para instalações elétricas de baixa tensão. Rio de Janeiro: ABNT.

11. Starnes, W. H., Jr., & Ge, X. (2004). Mechanism of Autocatalysis in the Thermal Dehydrochlorination of Poly(vinyl chloride). Macromolecules, 37(2), 352-359. http://dx.doi.org/10.1021/ma0352835.

12. Wypych, J. (1985). Polyvinyl chloride degradation. In A. D. Jenkins (Ed). Polymer Science Library 3. Amsterdam: Elsevier Science Publishers.

13. Guo, H., Gao, Q., Ouyang, C., Zheng, K., & Xu, W. (2015). Research on properties of rigid polyurethane foam with heteroaromatic and brominated benzyl polyols. Journal of Applied Polymer Science, 132(33), 423-449. http://dx.doi.org/10.1002/app.42349.

14. Cangemi, J. M., Santos, A. M., & Claro, N. S. (2009). Poliuretano: de travesseiros a preservativos, um polímero versátil. Química Nova na Escola, 31(3), 159-164. Retrieved in 13 May 2016, from http://qnesc.sbq.org.br/online/qnesc31_3/02-QS-3608.pdf

15. Thirumal, M., Khastgir, D., Manjunath, B. S., Naik, Y. P., & Singla, N. K. (2007). Mechanical, morphological and thermal properties of rigid polyurethane foam: effect of the fillers. Cellular Polymers, 26(4), 245-259.

16. Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.-M., & Dubois, P. (2009). New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Materials Science and Engineering, 63(3), 100-125. http://dx.doi.org/10.1016/j.mser.2008.09.002.

17. Wicksa, D. A., & Wicks, Z. W., Jr. (2001). Blocked isocyanates III Part B: uses and applications of blocked isocyanates. Progress in Organic Coatings, 41, 1-83.

18. Awad, H., Gül, M., Zaman, H., Yu, H., & Al-Hussein, M. (2014). Evaluation of the thermal and structural performance of potential energy efficient wall systems for mid-rise wood-frame buildings. Energy and Building, 82, 416-427. http://dx.doi.org/10.1016/j.enbuild.2014.07.032.

19. Gu, R., Sain, M. M., & Konar, S. K. (2013). A feasibility study of polyurethane composite foam with added hardwood pulp. Industrial Crops and Products, 42, 273-279. http://dx.doi.org/10.1016/j.indcrop.2012.06.006.

20. Zhang, G., Wang, B., Ma, L., Wu, L., Pan, S., & Yang, J. (2014). Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels. Composite Structures, 108, 304-310. http://dx.doi.org/10.1016/j.compstruct.2013.09.040.

21. Garrido, M., Correia, J. R., & Keller, T. (2016). Effect of service temperature on the shear creep response of rigid polyurethane foam used in composite sandwich floor panels. Construction & Building Materials, 18, 235-244. http://dx.doi.org/10.1016/j.conbuildmat.2016.05.074.

22. Hadden, R., Alkatib, A., Rein, G., & Torero, J. L. (2014). Radiant ignition of polyurethane foam: the effect of sample size. Fire Technology, 50(3), 673-691. http://dx.doi.org/10.1007/s10694-012-0257-x.

23. Gallo, J. B. E., & Agnelli, J. A. M. (1998). Aspectos do comportamento de polímeros em condições de incêndio. Polímeros: Ciência e Tecnologia, 8(1), 23-37. http://dx.doi.org/10.1590/S0104-14281998000100005.

24. Qian, L., Feng, F., & Tang, S. (2014). Bi-phase flame-retardant effect of hexa-phenoxy-cyclotriphosphazene on rigid polyurethane foams containing expandable graphite. Polymer, 55(1), 95-101. http://dx.doi.org/10.1016/j.polymer.2013.12.015.

25. Eljarrat, E., & Barceló, D. (2011). Brominated flame retardants. Berlin: Springer.

26. Bayler, C. L., & Hirschler, M. M. (2008). Thermal decomposition of polymers, the SFPE Handbook of Fire Protection Engineering (4th ed.). Quincy: National Fire Protection Association.

27. Tsuyumoto, I., Onoda, Y., Hashizume, F., & Kinpara, E. (2011). Flame-Retardant Rigid Polyurethane Foams Prepared with Amorphous Sodium Polyborate. Journal of Applied Polymer Science, 122(3), 1707-1711. http://dx.doi.org/10.1002/app.34025.

28. Thirumal, M., Khastgir, D., Singha, N. K., Manjunath, B. S., & Naik, Y. P. (2010). Halogen-free flame-retardant rigid polyurethane foams: Effect of alumina trihydrate and triphenylphosphate on the properties of polyurethane foams. Journal of Applied Polymer Science, 116(4), 2260-2268. http://dx.doi.org/10.1002/app.31626.

29. Albuquerque, I. M., Pasqualoto, A. S., Trevisan, M. E., Gonçalves, M. P., Badaró, A. F. V., Moraes, J. P., & Prado, A. L. C. (2013). Role of physiotherapy in the rehabilitation of survivors of the Kiss nightclub tragedy in Santa Maria, Brazil. Physiotherapy, 99(4), 269-270. PMid:24050497. http://dx.doi.org/10.1016/j.physio.2013.07.001.

30. Abd El-Wahab, H., Abd El-Fattah, M., Abd El-Khalik, N., & Kazlauciunas, A. (2015). Synthesis and performance of new modified reactive flame-retardant alkyd resin based on tetrabromophthalic anhydride as varnish for surface coatings. Journal of Coatings Technology and Research, 12(1), 97-105. http://dx.doi.org/10.1007/s11998-014-9615-6.

31. Li, M., Luo, J., Huang, Y., Li, X., Yu, T., & Ge, M. (2014). Recycling of Waste Poly(ethylene terephthalate) into flame-retardant rigid polyurethane foams. Journal of Applied Polymer Science, 131(40857), 1-6.

32. Hezma, A. M., Elashmawi, I. S., Rajeh, A., & Kamal, M. (2016). Change spectroscopic, thermal and mechanical studies of PU/PVC blends. Physica B: Condensed Matter, 495, 4-10. http://dx.doi.org/10.1016/j.physb.2016.04.043.

33. Guo-Dong, F., Yun, H., Pu-You, J., Ma, Y., & Yong-Hong, Z. (2015). Influence of a nitrogen-containing oil-based plasticizer on mechanical, thermal stability and fire performance of plasticized poly(vinyl chloride) and study of its mechanism of flame retardancy with Py–GC/MS. Industrial Crops and Products, 77, 883-894. http://dx.doi.org/10.1016/j.indcrop.2015.09.032.

34. Radhakrishnan Nair, M. N., & Gopinathan Nair, M. R. (2012). Studies on impact modification and fractography of solution cast blends of PVC and NR/PU block copolymers. Polymer Bulletin, 68(3), 859-877. http://dx.doi.org/10.1007/s00289-011-0656-z.

35. Chen, C.-J., Tseng, I.-H., Lu, H.-T., Tseng, W.-Y., Tsai, M.-H., & Huang, S.-L. (2011). Thermal and tensile properties of HTPB-based PU with PVC blends. Materials Science and Engineering A, 528(15), 4917-4923. http://dx.doi.org/10.1016/j.msea.2011.03.056.

36. Radhakrishnan Nair, M. N., & Gopinathan Nair, M. R. (2011). Thermogravimetric analysis of PVC/NR-b-PU blends. Journal of Thermal Analysis and Calorimetry, 103(3), 863-873. http://dx.doi.org/10.1007/s10973-010-1113-1.

37. HighBeam. (2010). Dow Automotive Systems introduces advanced PU foam technology in Europe: broad proprietary R&D capabilities for aging stability, low emissions and PVC skin compatibility. Cellular Polymers, 29(2), 143.

38. Radhakrishnan Nair, M. N., & Gopinathan Nair, M. R. (2006). Compatibility studies and characterisation of a PVC/NR blend system using NR/PU block copolymer. Polymer Bulletin, 56(6), 619-631. http://dx.doi.org/10.1007/s00289-006-0524-4.

39. Grigoryeva, O., Fainleib, A., Stepanenko, L., Sergeeva, L., & Pissis, P. (2005). Recycling of PVC/PU waste and reuse in PVC formulations: structure-property relationship. Polymer Engineering and Science, 45(6), 801-808. http://dx.doi.org/10.1002/pen.20343.

40. Al-Salah, H. A. (1998). Polymer compatibility enhancement via ion-ion and ion-dipole interactions: Ternary blends of polyurethane, poly(vinyl chloride) and poly(styrene-co-maleic anhydride). Polymer Bulletin, 40(4), 477-484. http://dx.doi.org/10.1007/s002890050279.

41. Mariappan, T., Yi, D., Chakraborty, A., Singha, N. K., & Wilkie, C. A. (2014). Thermal stability and fire retardancy of polyurea and epoxy nanocomposites using organically modified magadiite. Journal of Fire Sciences, 32(4), 346-361. http://dx.doi.org/10.1177/0734904113516268.

42. Peng, Y.-H., Shih, Y.-H., Lai, Y.-C., Liu, Y.-Z., Liu, Y.-T., & Lin, N.-C. (2014). Degradation of polyurethane by bacterium isolated from soil and assessment of polyurethanolytic activity of a Pseudomonas putida strain. Environmental Science and Pollution Research International, 21(16), 9529-9537. PMid:24633845. http://dx.doi.org/10.1007/s11356-014-2647-8.

43. Mano, E. B., & Mendes, L. C. (2004). Introdução a Polímeros. São Paulo: Edgar Blücher.

44. Trovati, G., Sanches, E. A., Claro, S., No., Mascarenhas, Y. P., & Chierice, G. O. (2010). Characterization of Polyurethane Resins by FTIR, TGA, and XRD. Journal of Applied Polymer Science, 115(1), 263-268. http://dx.doi.org/10.1002/app.31096.

45. American Society for Testing and Materials – ASTM. (2010). ASTM D570-98(2010)e1: standard test method for water absorption of plastics. West Conshohocken: ASTM.

46. Tudo Sobre Plasticos. (2016). Retrieved in 13 May 2016, from http://www.tudosobreplasticos.com/aditivos/antichamas.asp

47. American Society for Testing and Materials – ASTM. (2015). ASTM D695 -15: standard test method for compressive properties of rigid plastics. West Conshohocken: ASTM. http://dx.doi.org/10.1520/d0695-15.

48.Associação Brasileira de Normas Técnicas – ABNT. (2015). ABNT NBR 9178: espuma flexível de poliuretano: determinação das características de queima. Rio de Janeiro: ABNT.

49. Wu, D.-H., Zhao, P.-H., Liu, Y.-Q., Liu, X.-Y., & Wang, X.-F. (2013). Halogen free flame retardant rigid polyurethane foam with a novel phosphorus2nitrogen intumescent flame retardant. Journal of Applied Polymer Science, 131(11), 1-7.

50. Chattopadhyay, D. K., & Webster, D. C. (2009). Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science, 34(10), 1068-1133. http://dx.doi.org/10.1016/j.progpolymsci.2009.06.002.

51. Lopes, M. C., Trigueiro, J. P. C., Castro, V. G., Lavall, R. L., & Silva, G. G. (2016). Otimização do processo de dispersão de nanotubos de carbono em poliuretano termorrígido. Polímeros, 26(1), 81-91. http://dx.doi.org/10.1590/0104-1428.2087.

52. Furlan, L. G., Duarte, U. L., & Mauler, R. S. (2012). Avaliação das propriedades de compósitos de polipropileno reforçados com casca de aveia. Química Nova, 35(8), 1499-1501. http://dx.doi.org/10.1590/S0100-40422012000800002.

53. Salmoria, G. V., Leite, J. L., Vieira, L. F., Pires, A. T. N., & Roesler, C. R. M. (2012). Mechanical properties of PA6/PA12 blend specimens prepared by selective laser sintering. Polymer Testing, 31(3), 411-416. http://dx.doi.org/10.1016/j.polymertesting.2011.12.006.

54. American Society for Testing and Materials – ASTM. (2010). ASTM D3801-10: standard test method for measuring the comparative burning characteristics of solid plastics in a vertical position. West Conshohocken: ASTM.

55. Xu, Y., Tang, M., Chen, X., Chen, M., Yu, J., Ma, Y., Sun, Z., Zhang, Z., & Lv, J. (2015). Effect of phosphorus masterbatch on flame retardancy and thermal stability of polypropylene/thermoplastic polyurethane blends. Polymers & Polymer Composites, 23(2), 113-119.

56. American Chemistry Council. (2016, March 11). Polyurethanes. Retrieved in 13 May 2016, from http://polyurethane.americanchemistry.com/Health-Safety-and-Product-Stewardship

57. Vilar, W. D. (2004). Química e tecnologia dos poliuretanos. Rio de Janeiro: Reagentes & Fundamentos. Retrieved in 13 May 2016, from http://www.poliuretanos.com.br/Cap1/11mercado.htm

58. Wang, J.-S., Wang, G.-H., Liu, Y., Jiao, Y.-H., & Liu, D. (2014). Thermal stability, combustion behavior, and toxic gases in fire effluents of an intumescent flame-retarded polypropylene system. Industrial & Engineering Chemistry Research, 53(17), 6978-6984. http://dx.doi.org/10.1021/ie500262w.

59. Associação Brasileira de Normas Técnicas – ABNT. (2006). ABNT NBR 15366-2: painéis industrializados com espuma rígida de poliuretano. Parte 2: classificação quanto à reação ao fogo. Rio de Janeiro: ABNT.

60. Associação Brasileira de Normas Técnicas – ABNT. (2009). NBR ISO 31000: gestão de riscos: princípios e diretrizes. Rio de Janeiro: ABNT.

61. Associação Brasileira de Normas Técnicas – ABNT. (2004). ABNT NBR ISO 14001: sistemas de gestão ambiental: requisitos com orientações para uso. Rio de Janeiro: ABNT.

62. Landry, T. D., Pauluhn, J., Daems, D., & Reimann, K. A. (2002). Polyurethane products in fires: acute toxicity of smoke and fire gases. Retrieved in 13 May 2016, from http://polyurethane.americanchemistry.com/Resources-and-Document-Library/Polyurethane-Products-in-Fires-Acute-Toxicity-of-Smoke-and-Fire-Gases.pdf

63. American Chemistry Council. (2011). Fire safety guidance..working with polyurethane foam products during new construction, retrofit and repair (AX-426). Washington. Retrieved in 13 May 2016, from http://polyurethane.americanchemistry.com/Resources-and-Document-Library/11365.pdf

64. American Chemistry Council. (2012, March 11). Model Building Code Fire Performance Requirements (AX-265). Washington. Retrieved in 13 May 2016, from https://polyurethane.americanchemistry.com/Resources-and-Document-Library/11361.pdf

5b7b14b40e8825b058896e52 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections