Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Selection of appropriate reinforcement for nylon material through mechanical and damping characteristics

Hari Bodipatti Subburamamurthy; Rajasekar Rathanasamy; Harikrishna Kumar Mohan Kumar; Moganapriya Chinnasamy; Gobinath Velu Kaliyannan; Saravanan Natarajan

Downloads: 0
Views: 23


Nylon composites were developed using 5-20 wt.% of Talc, Kaolin, Mica and Calcium Carbonate (CaCO3) particulates. Mechanical and free vibration characteristics of nylon composites were examined through experimental and analytical approach. Particulate filled nylon composites exhibited enhancement in tensile strength, specific stiffness, natural frequency and damping factor compared to pure nylon. As a whole, talc reinforced nylon composites especially 15 wt.% filler content (T15) portrayed significant performance in mechanical and vibrational characteristics. This is followed by nylon composites based on kaolin (K15) and mica (M20) compared to CaCO3 based nylon composites. T15 depicted 18.13%, 33.33%, 81.2% increment in tensile strength, natural frequency and damping factor compared to pure nylon. The simulated ANSYS results are in agreement with experimental results. Among four different particulates, talc is proven as appropriate reinforcing agent for nylon owing to larger surface area of talc particles and polar-polar interaction between talc and nylon matrix.


damping factor, mechanical testing, mineral fillers, nylon 6


1 Bose, S., & Mahanwar, P. (2004). Effect of particle size of filler on properties of nylon-6. Journal of Minerals & Materials Characterization & Engineering, 3(1), 23-31. http://dx.doi.org/10.4236/jmmce.2004.31003.

2 Bose, S., & Mahanwar, P. (2005). Influence of particle size and particle size distribution on MICA filled nylon 6 composite. Journal of Materials Science, 40(24), 6423-6428. http://dx.doi.org/10.1007/s10853-005-2024-6.

3 Unal, H., Fındık, F., & Mimaroglu, A. (2003). Mechanical behavior of nylon composites containing talc and kaolin. Journal of Applied Polymer Science, 88(7), 1694-1697. http://dx.doi.org/10.1002/app.11927.

4 Lapčík, L., Maňas, D., Lapčíková, B., Vašina, M., Staněk, M., Čépe, K., Vlček, J., Waters, K. E., Greenwood, R. W., & Rowson, N. A. (2018). Effect of filler particle shape on plastic-elastic mechanical behavior of high density poly (ethylene)/mica and poly (ethylene)/wollastonite composites. Composites. Part B, Engineering, 141, 92-99. http://dx.doi.org/10.1016/j.compositesb.2017.12.035.

5 Abu Bakar, M., Leong, Y., Ariffin, A., & Mohd Ishak, Z. A. (2008). Effect of chemical treatments on the mechanical, flow, and morphological properties of talc-and kaolin-filled polypropylene hybrid composites. Journal of Applied Polymer Science, 110(5), 2770-2779. http://dx.doi.org/10.1002/app.28791.

6 Jang, K.-S. (2016). Mineral filler effect on the mechanics and flame retardancy of polycarbonate composites: talc and kaolin. e-Polymers, 16(5), 379-386. http://dx.doi.org/10.1515/epoly-2016-0103.

7 Xanthos, M. (2010). Functional fillers for plastics. Germany: John Wiley & Sons. http://dx.doi.org/10.1002/9783527629848.

8 Ouchiar, S., Stoclet, G., Cabaret, C., Georges, E., Smith, A., Martias, C., Addad, A., & Gloaguen, V. (2015). Comparison of the influence of talc and kaolinite as inorganic fillers on morphology, structure and thermomechanical properties of polylactide based composites. Applied Clay Science, 116, 231-240. http://dx.doi.org/10.1016/j.clay.2015.03.020.

9 Zhang, Z.-X., Zhao, X.-P., Sun, B., Ma, Z.-G., Xin, Z. X., & Prakashan, K. (2017). Synergistic effects of kaolin and talc in a bromobutyl rubber compound for syringe plunger application. Journal of Elastomers and Plastics, 49(1), 12-22. http://dx.doi.org/10.1177/0095244315620915.

10 Leong, Y., Abu Bakar, M., Ishak, Z. M., Ariffin, A., & Pukanszky, B. (2004). Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. Journal of Applied Polymer Science, 91(5), 3315-3326. http://dx.doi.org/10.1002/app.13542.

11 Ozen, E., Kiziltas, A., Kiziltas, E. E., & Gardner, D. J. (2013). Natural fiber blend-nylon 6 composites. Polymer Composites, 34(4), 544-553. http://dx.doi.org/10.1002/pc.22463.

12 Larrañaga, M. D., Lewis, R. J., & Lewis, R. A. (2016). Hawley’s condensed chemical dictionary. USA: John Wiley & Sons. http://dx.doi.org/10.1002/9781119312468.

13 Unal, H., Mimaroglu, A., & Alkan, M. (2004). Mechanical properties and morphology of nylon-6 hybrid composites. Polymer International, 53(1), 56-60. http://dx.doi.org/10.1002/pi.1246.

14 Bakar, M. A., Leong, Y., Ariffin, A., & Ishak, Z. M. (2007). Mechanical, flow, and morphological properties of talc-and kaolin-filled polypropylene hybrid composites. Journal of Applied Polymer Science, 104(1), 434-441. http://dx.doi.org/10.1002/app.25535.

15 Kumar, K. V. M., Krishnamurthy, K., Rajasekar, R., Kumar, P. S., Pal, K., & Nayak, G. C. (2019). Influence of graphene oxide on the static and dynamic mechanical behavior of compatibilized polypropylene nanocomposites. Materials Testing, 61(10), 986-990. http://dx.doi.org/10.3139/120.111411.

16 Kumar, M. K. H., Shankar, S., Rajasekar, R., Kumar, P. S., & Kumar, P. S. (2017). Partial replacement of carbon black by nanoclay in butyl rubber compounds for tubeless tires. Materials Testing, 59(11-12), 1054-1060. http://dx.doi.org/10.3139/120.111109.

17 Mohan Kumar, H. K., Subramaniam, S., Rathanasamy, R., Pal, S. K., & Palaniappan, S. K. (2020). Substantial reduction of carbon black and balancing the technical properties of styrene butadiene rubber compounds using nanoclay. Journal of Rubber Research, 23(2), 79-87. http://dx.doi.org/10.1007/s42464-020-00039-7.

18 Koo, J. H. (2006). Polymer nanocomposites: processing, characterization, and applications. USA: McGraw Hill Education.

19 Das, C., Rajasekar, R., Friedrich, S., & Gehde, M. (2011). Effect of nanoclay on vibration welding of LLDPE nanocomposites in presence and absence of compatibiliser. Science and Technology of Welding and Joining, 16(2), 199-203. http://dx.doi.org/10.1179/1362171810Y.0000000017.

20 Araújo, E. M., Mélo, T. J. A., Santana, L. N. L., Neves, G. A., Ferreira, H. C., Lira, H. L., Carvalho, L. H., A’vila, M. M., Jr., Pontes, M. K. G., & Araújo, I. S. (2004). The influence of organo-bentonite clay on the processing and mechanical properties of nylon 6 and polystyrene composites. Materials Science and Engineering B, 112(2-3), 175-178. http://dx.doi.org/10.1016/j.mseb.2004.05.027.

21 Fornes, T., & Paul, D. (2003). Formation and properties of nylon 6 nanocomposites. Polímeros: Ciência e Tecnologia, 13(4), 212-217. http://dx.doi.org/10.1590/S0104-14282003000400004.

22 Huber, T., Misra, M., & Mohanty, A. K. (2014). Mechanical properties of compatibilized nylon 6/polypropylene blends; studies of the interfacial behavior through an emulsion model. Journal of Applied Polymer Science, 131(18), 40792. http://dx.doi.org/10.1002/app.40792.

23 Sangroniz, L., Moncerrate, M. A., De Amicis, V. A., Palacios, J. K., Fernández, M., Santamaria, A., Sánchez, J. J., Laoutid, F., Dubois, P., & Müller, A. J. (2015). The outstanding ability of nanosilica to stabilize dispersions of nylon 6 droplets in a polypropylene matrix. Journal of Polymer Science. Part B, Polymer Physics, 53(22), 1567-1579. http://dx.doi.org/10.1002/polb.23786.

24 Frulloni, E., Kenny, J. M., Conti, P., & Torre, L. (2007). Experimental study and finite element analysis of the elastic instability of composite lattice structures for aeronautic applications. Composite Structures, 78(4), 519-528. http://dx.doi.org/10.1016/j.compstruct.2005.11.013.

25 Arvinda Pandian, C., & Siddhi Jailani, H. (2019). Dynamic and vibrational characterization of natural fabrics incorporated hybrid composites using industrial waste silica fumes. International Journal of Polymer Analysis and Characterization, 24(8), 721-730. http://dx.doi.org/10.1080/1023666X.2019.1668141.

26 Rajesh, M., Pitchaimani, J., & Rajini, N. (2016). Free vibration characteristics of banana/sisal natural fibers reinforced hybrid polymer composite beam. Procedia Engineering, 144, 1055-1059. http://dx.doi.org/10.1016/j.proeng.2016.05.056.

27 Friedrich, K., & Breuer, U. (2015). Multifunctionality of polymer composites: challenges and new solutions. USA: William Andrew. https://doi.org/10.1016/C2013-0-13006-1.

6085c1daa953954ad5207b54 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections