Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.02818
Polímeros: Ciência e Tecnologia
Original Article

Influence of water absorption on glass fibre reinforced IPN composite pipes

Gopi, Suresh; Loganathan, Ganesh Babu; Sekar, Bharani Kumar; Krishnamoorthy, Rajesh Kanna; Sekaran, Vivek; Mohan, Akash Rajendran

Downloads: 0
Views: 134

Abstract

Glass fibre reinforced composite pipes were fabricated by using an IPN blend of 0%, 10%, 20%, 30%, 40%, 50% PU prepolymer (Polyurethane) with VER(Vinylester) resin. The prepared IPN (Interpenetrating polymer networks) composite pipes were subjected to boiling water immersion tests in order to study the effect of moisture absorption characteristics. The Burst strength and Hoop strength of water immersed specimens were evaluated (3, 6, 9, 12 months) and compared along with dry composite specimens. It was found that, percentage of moisture uptake was significantly reduced with increase in PU loading into the IPN system as well the Burst strength and Hoop strength of the specimens were found to be diminishing with raise in percentage of moisture uptake and raise in temperature; contrarily, the addition of PU significantly reduced the moisture intake, in addition to that the PU added IPN pipe offers better mechanical strength while compared with neat Vinylester pipes.

Keywords

interpenetrating polymer networks; vinylester; polyurethane; hygrothermal; GFRP pipes.

References

1 Al-Sulaiman, F., Khan, J., Merah, N., Kounain, M. A., & Mehdi, M. (2010). Effects of weathering on failure pressure of filament-wound GFRP thermoset pipes. Journal of Composite Materials45(6), 645-655. http://dx.doi.org/10.1177/0021998310377933

2 Chang, D. J. (2003). Burst tests of filament-wound graphite-epoxy tubes. Journal of Composite Materials37(9), 811-882. http://dx.doi.org/10.1177/002199803031032

3 Yao, J., & Ziegmann, G. (2007). Water absorption behavior and its influence on properties of GRP Pipe. Journal of Composite Materials41(8), 993-1008. http://dx.doi.org/10.1177/0021998306067265

4 Ghorbel, I. (1995). Durability of closed-end pressurized GRP Filament wound pipes under hygrothermal aging conditions. Part II: creep Tests. Journal of Composite Materials30(14), 1581-1595. http://dx.doi.org/10.1177/002199839603001404

5 Shahram, E., Abbas, H. R., & Shiva, E. (2015). Effects of moisture absorption on degradation of E-glass fiber reinforced Vinyl Ester composite pipes and modelling of transient moisture diffusion using finite element analysis. Corrosion Science90(1), 168-175. 

6 Suresh, G., Jayakumari, L. S., & Dinesh, K. S. (2017). Finite element analysis of IPN reinforced woven fabric composite. Revistamateria22(4), 1-6. http://dx.doi.org/10.1590/s1517-707620170004.0216

7 Suresh, G., & Jayakumari, L. S. (2016). Analyzing the mechanical behavior of E-glass fibre reinforced interpenetrating polymer network composite pipe. Journal of Composite Materials50(22), 3053-3061. http://dx.doi.org/10.1177/0021998315615408

8 Lima Sobrinho, L., Ferreira, M., & Bastian, F. L. (2009). The effects of water absorption on an ester vinyl resin system. Materials Research12(3), 353-361. http://dx.doi.org/10.1590/S1516-14392009000300017

9 Suresh, G., & Jayakumari, L. S. (2015). Evaluating the mechanical properties of E-Glass fiber/carbon fiber reinforced interpenetrating polymer networks. Polimeros: Ciência e Tecnologia25(1), 49-57. http://dx.doi.org/10.1590/0104-1428.1650

10 Guoqiang, L., Su-Seng, P., & Jack, E. H. (2001). Stiffness degradation of FRP strengthened RC beams subjected to hygrothermal and aging attacks. Journal of Composite Materials36(7), 795-812. 

11 Wang, G. Y., Wang, Y. L., & Hu, C. P. (2000). Interpenetrating polymer networks of polyurethane and graft vinyl ester resin: polyurethane formed with toluene diisocyanate. European Polymer Journal36(4), 735-742. http://dx.doi.org/10.1016/S0014-3057(99)00113-5

12 Cristea, M., Ibanescu, S., Cascaval, C. N., & Rosu, D. (2009). Dynamic mechanical analysis of polyurethane-epoxy interpenetrating polymer networks. High Performance Polymers21(5), 608-623. http://dx.doi.org/10.1177/0954008309339940

13 Fan, L. H., Hu, C. P., & Ying, S. K. (1996). Thermal analysis during the formation of polyurethane and vinyl ester resin interpenetrating polymer networks. Polymer37(6), 887-1058. http://dx.doi.org/10.1016/0032-3861(96)87280-6

14 Qin, C. L., Cai, W. M., Cai, J., Tang, D.-Y., Zhang, J.-S., & Qin, M. (2004). Damping properties and morphology of polyurethane/vinyl ester resin interpenetrating polymer network. Materials Chemistry and Physics85(3), 402-409. http://dx.doi.org/10.1016/j.matchemphys.2004.01.019

15 Mezghani, K. (2012). Long term environmental effects on physical properties of Vinylester composite pipes. Polymer Testing31(1), 76-82. http://dx.doi.org/10.1016/j.polymertesting.2011.10.001

16 Feih, S., Mathys, Z., Mathys, G., Gibson, A. G., Robinson, M., & Mouritz, A. P. (2008). Influence of water content on failure of phenolic composites in fire. Polymer Degradation & Stability93(2), 376-382. http://dx.doi.org/10.1016/j.polymdegradstab.2007.11.027

17 Suresh, G., Abdul Munaf, A., Akash, R. M., Bharani Kumar, S., & Kanagaraja, K. (2019). Analyzing the mechanical behaviour of carbon fiber reinforced spur gear with IPN as matrix material. SSRN1(11), 1-4. 

5e8e217c0e88251c1a1ad513 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections