Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

In Vitro Degradation of Poly (L-co-D,L lactic acid) Containing PCL-T

Duarte, Marcia Adriana T.; Duek, Eliana A. R.; Motta, Adriana C.

Downloads: 0
Views: 1047


The application of polymer-based bioresorbable temporary devices in the medical field grows continuously, and professionals from several areas act to solve problems related to body functions lost due to diseases, accidents or natural wear. Here we study the influence from poly(caprolactonetriol) (PCL-T) on the degeneration process in the copolymer poly(L-co-DL-lactic acid) (PLDLA) membrane, by producing PLDLA/PCL-T blends with 90/10, 70/30 and 50/50 relative concentrations. The data for in vitro degradation showed that PCL-T decreases the rate of PLDLA. This was obtained with the following techniques: Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Gel Permeation Chromatography (GPC) and Scanning Electron Microscopy (SEM). Therefore, it is possible to vary the membrane degradation rate by changing the blend composition, which is a tool to tailor a biomaterial.


Bioresorbable polymer, in vitro degradation, PLDLA/PCL-T.


1. Deng, M.; Nair, L. S.; Nukavarapu, S. P.; Kumbar, S. G.; Jiang, T.; Weikel, A. L.; Krogman, N. R.; Allcock, H. R. & Laurencin, C. T. - Adv. Funct. Mater., 20, p.2794 (2010). http://dx.doi.org/10.1002/adfm.201000968

2. Nampoothiri, K. M.; Nimisha, R. N. & Jonh, R. P. - Bioresour. Technol., 101, p.8493 (2010).

3. Park, K. I. & Xanthos, M. A. - Polym. Degrad. Stabil., 94, p.834 (2009). http://dx.doi.org/10.1016/j. polymdegradstab.2009.01.030

4. Walton, M. & Cotton, N. - J. Biomater. Appl., 21, p.395 (2007). http://dx.doi.org/10.1177/0885328206065125

5. Bret, D.; Ulery, L. S. N. & Cato, T. L. - J. Polym. Sci. Pol. Phys., 49, p.832 (2011).

6. Duarte, M. A. T. - “Influence of concentration of PCL-T membranes PLDLA: a study in vitro and in vivo”, PhD thesis, Mechanical Engineering, State University of Campinas (2009).

7. Maluf-Meiken, L. C. V.; Silva, D. R. M.; Duek, E. A. R. & Alberto-Rincon, M. C. - J. Mater. Sci: Mater. Med., 17, p.481 (2006).

8. Méier, M. M.; Kanis, L. A.; Lima, J. C; Pires, A. T. N. & Soldi, V. - Polym. Advanc. Technol., 15, p.593 (2004).

9. Balzer, O. S. - “Comparative Study of the Effect of Plasticizer polycaprolactones diol and triol and dioctyl phthalate in poly (vinyl chloride)”, PhD thesis, Federal University of Santa Catarina, Florianópolis (2009).

10. Motta, A. C. & Duek, E. A. R. - Polimeros, 17, p.123 (2007). http://dx.doi.org/10.1590/S0104-14282007000200011

11. Luciano, R. M.; Zavaglia, C. A. C.; Duek, E. A. R. & Alberto-Rincon, M. C. - J. Mater. Sci: Mater. Med., 14, p.87 (2003).

12. Baraúna, G. - “Peripheral nerve regeneration”, Dissertation, State University Campinas (2007).

13. Motta, A. C. & Duek, E. A. R. - Polimeros, 11, p.340 (2006).

14. Leiggener, C. S.; Curtis, R. & Rahn, B. A. - Biomaterials, 27, p.202 (2006). http://dx.doi. org/10.1016/j.biomaterials.2005.05.068

15. Zou, T.; Cheng, S. X.; Zhang, X. Z. & Zhang, R. X. - J. Biomed. Mater. Res. Part B: Appl. Biomater., 82B, p.400 (2007). http://dx.doi.org/10.1002/jbm.b.30745

16. Tsuyi, H. & Miyauchi, S. Poly (L-lactide) – Polym. Degrad. Stabil., 71, p.415 (2001).

17. Pezzin, A. P. T.; Alberda van Ekenstein, G. O. R. & Duek, E. A. R. - Polymer, 42, p.8303 (2001). http://dx.doi. org/10.1016/S0032-3861(01)00273-7

18. Hou, R.; Wu, L.; Wang, J. & Huang, N. - Appl. Surface Sci., 256, p.5000 (2010). http://dx.doi.org/10.1016/j. apsusc.2010.03.042

19. Lam, K. H.; Nieuwenhuis, P.; Molenaar, I.; Esselbrugge, H.; Feijen, J.; Dijkstra, P. J. & Schakenraad, J.M. - J. Mater. Sci: Mater. Med., 5, p.181 (1994). http://dx.doi. org/10.1007/BF00121086

20. Li, S. - J. Biomed. Mater. Res., 48, p.342 (1999). http://dx.doi. org/10.1002/(SICI)1097-4636(1999)48:3<342::AIDJBM20> 3.0.CO;2-7
588371a47f8c9d0a0c8b49cb polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections