Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.4322/polimeros.2014.050
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Effect of tamoxifen in RAFT miniemulsion polymerization during the synthesis of polymeric nanoparticles

Moreira, Tailane Sant'Anna; Oliveira, Marco Antonio M.; Nele, Márcio; Pinto, José Carlos; Lima, Luis Mauricio T. da R. e

Downloads: 0
Views: 1146

Abstract

Tamoxifen (TXF) is currently the only hormonal agent used in the treatment of breast cancer. Although very effective, TXF shows low solubility, which affects its absorption/bioavailability. A common strategy to overcome this barrier is the use of drug delivery systems (DDS) to increase drug stability and improve the treatment effectiveness. Reversible addition-fragmentation chain transfer (RAFT) polymerization is the most versatile method of the Controlled/living radical polymerizations (CLRP), which allows the synthesis of well-defined polymers and has been adapted to a wide range of polymerization systems. Miniemulsion polymerization is a dispersed system, generally used to prepare nanoparticles (NP) within 50 to 500 nm. The aim of this work was to evaluate the effect of the in situ incorporation of TXF in the miniemulsion RAFT polymerization. Conventional and RAFT polymerization were performed using methyl methacrylate (MMA) as monomer. Although the in situ addition of TXF promoted a slight reduction of the reaction kinetics, it did not affect the particle size distribution or the molecular weight control of the RAFT polymerization. These preliminary results suggest that in situ incorporation of TXF during the synthesis of polymeric NP via RAFT polymerization allows the production of a polymeric DDS for different uses such as breast cancer treatment.

Keywords

Nanoparticles, Drug Delivery Systems, RAFT Polymerization, Tamoxifen, Methyl Methacrylate

References



1. Youlden D. R., Cramb S. M., Dunn N. A. M., Muller J. M., Pyke C. M.& Baade P.D. – Cancer Epidemol., 36, p. 237 (2012).

2. Pelucchi C., Levi F. & La Vecchia C. – The Breast, 19, p. 198 (2010).

3. Gradishar W. J. & Hellmund R. – Clin. Breast Cancer, 2, p. 282 (2010).

4. Gibson D. F. C., Gottardis M. M. & Jordan V. C. – The J. Steroid Biochem. Mol. Biol., 37, p. 765 (1990).

5. Shin S. C & Choi J.S.- Anticancer Drugs, 20, p.584 (2009).

6. McVie J. G., Simonetti G. P., Stevenson D., Briggs R. J., Guelen P. J. & de Vos D. The – Exp. Clin. Pharmacol., 8, p. 505 (1986) .

7. Tukker J. J., Blankenstein M. A. & Nortier J. W. – J. Pharm. Pharmacol., 38, p.888 (1986).

8. Maillard S., Amelier T., Gauduchon J., Gougelet A., Gouilleux F., Legrand P., Marsaud V., Fattal E., Sola B. & Renoir J. M. - J. Steroid Biochem. Mol. Biol., 94 p.111 (2005).

9. Cohen, I. – Gynecol. Oncol., 94, p. 256 (2004).

10. Senkus-Konefka E., Konefka T. & Jassem J. - Cancer Treat. Rev., 30, p. 291 (2004)

11. Shin S. C., Chol J. S. & Li X. - Int. J. Pharm., 313, p.144 (2006).

12. Brauch H. & Jordan V. C. – Eur. J. Cancer, 45, p. 2274 (2009)

13. Bonferoni M.C., Rossi S., Ferrari F., Stavik E., Pena-Romero A. & Caramella C., AAPS Pharm. Sci. Tech. 1, 2, p.15 (2000).

14. Haley, B. & Frenkel E. – Sem. Orig. Invest., 26, p. 57 (2008).

15. Chawla J. S. & Amiji M. M.- Int. J. Pharm., 249, p. 127 (2002).

16. Chawla J. S. & Amiji M. M.- AAPS Pharm. Sci., 5, p.1 (2003).

17. Cavallaro G., Maniscalco L., Licciardi M.& Giammona G. – Macromol. Biosci., 4, p. 1028 (2004).

18. Fontana G., Maniscalco L., Schillaci D., Cavallaro G. & Giammona G. - Drug Deliv., 12, p.385 (2005).

19. Memisoglu-Bilensoy E., Vural L., Bochot A., Renoir J. M., Duchene D. & Hincal A. A.- J Control. Release, 104, p. 489 (2005).

20. Odian G. - “Principles of Polymerization”, John Wiley & Sons, New York (2004).

21. Moad G., Chiefari J., Chong Y. K., Krstina J., Mayadunne R. T. A. & Postma A., Rizzardo E. & Thang S. H.- Polym. Int., 49, p.993 (2000).

22. Matyjaszewski, K. & Davis, T. P. - “Handbook of Radical Polymerizations”, John Wiley & Sons, New York (2002).

23. Florenzano F. H. - Polímeros: Ciência e Tecnologia, 18, p. 100 (2008).

24. Moad G., Rizzardo E. & Thang S.H. – Aust. J. Chem., 58, p. 379 (2005).

25. Moad G., Chong Y. K.; Postma A.; Rizzardo E. & Thang S.H.- Polymer, 46, p. 8458 (2005).

26. Moad G., Rizzardo E. & Thang S.H. - Aust. J. Chem., 62, p.1402 (2009).

27. Moad G., Rizzardo E. & Thang S.H. - Aust. J. Chem., 59, p.1669 (2006).

28. Gregory A. & Stenzel M. H. – Prog. Pol. Sci., 37, p.38 (2012).

29. Kulkarni S.; Schilli C.; Grin B.; Muler A. H. E.; Hoffman, A. S. & Stayton P. S. - Biomacromol., 7, p. 2736 (2006).

30. Zhu M. Q., Wang L. Q., Exarhos, G. J. & Li, A. D. Q. - J. Am. Chem. Soc., 126, p. 2656 (2004).

31. Fresta M., Cavallaro G., Giammona G., Wehrli E. & Puglisi G. - Biomaterials, 17, p. 751 (1996).

32. Oliveira M. A. M.; Pinto J. C. S.; Nele M. & Melo P. A. – Macromol. Symp., 299, p. 34 (2011)

33. Oliveira M. A. M.; Pinto J. C. S.; Nele M. & Melo P. A. – Macromol. Reaction Eng., p. 1 (2012).

34. Oliveira M. A. M. – “Produção de micropartículas e nanopartículas poliméricas para aplicações biomédicas em sistemas heterogêneos de polimerização”. Tese de Doutorado., Universidade Federal do Rio de Janeiro (2011)

35. Lorca B. S. S., Bessa E. S,. Nele, M.., Santos E. P. & Pinto J. C. S.- Macromol. Symp. in press, (2012)

36. Zetterlund P. B., Kagawa Y.& Okubo M., Chem Rev, 108, p. 3747, 2008.

37. Hussain N., Jaitley V. & Florence, A. T. Adv. Drug Del. Rev., 50, p.107 (2001).
588371a37f8c9d0a0c8b49c4 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections