Synthesis and Thermal Degradation Kinetics of D–(+)– Galactose Containing Polymers
Saltan, Fehmi; Akat, Hakan
http://dx.doi.org/10.4322/polimeros.2014.012
Polímeros: Ciência e Tecnologia, vol.23, n6, p.697-704, 2013
Abstract
Abstract: In this study, it is investigated the synthesis and characterizations of polymerizable vinyl sugars. Carbohydrate containing polymers were synthesized via free radical polymerization. Thermal behavior of polymer derivatives was analyzed by using DSC and TG. Molecular weight dispersion of polymer derivatives was also analyzed with GPC. Molecular structures were analyzed by FT-IR and 1H-NMR spectrophotometer. We found that molecular weight of copolymers could effect to the thermal stability. According to TG data related to the copolymers, molecular weight of polymers increased while the thermal stability decreased. Thermogravimetric analysis of polymers also investigated. The apparent activation energies for thermal degradation of carbohydrate containing polymers were obtained by integral methods (Flynn–Wall–Ozawa, Kissinger– Akahira–Sunose, and Tang).
Keywords
Copolymers, carbohydrates, radical polymerization, thermal properties, kinetics
References
1. Weigel, P. H.; Schnaar, R. L.; Roseman, S. & Lee, Y. C. - Methods Enzymol., 83, p.294 (1982). http://dx.doi. org/10.1016/0076-6879(82)83023-1
2. Wulff, G.; Oppermann, W.; Diederichs, H.; Marquardt, U.; Bellmann, S.; Briiggemann, H.; Haselbach, J.; Lorenz, J. & Wehrhahn, D. - Neue Polym. Materialien (1996).
3. Paulsen, H. & Hbffgen, E. C. - Ann. Chem., 5, p.543 (1993).
4. Kobayashi, K. & Sumitomo, H. - Polym. J., 17, p.567 (1985). http://dx.doi.org/10.1295/polymj.17.567
5. Kochetkov, N. K. - Pure. Appl. Chem., 5, p.923 (1984). http://dx.doi.org/10.1351/pac198456070923
6. Dwek, R. A. - Chem. Rev., 96, p.683 (1996). PMid:11848770. http://dx.doi.org/10.1021/cr940283b
7. Okada, M. - Prog. Polym. Sci., 26, p.67 (2001). http:// dx.doi.org/10.1016/S0079-6700(00)00038-1
8. Ladmiral, V.; Melia, E. & Haddleton, D. M. - Eur. Polym. J., 40, p.431 (2004). http://dx.doi.org/10.1016/j. eurpolymj.2003.10.019
9. Cunliffe, D.; Pennadam, S. & Alexander, C. - Eur. Polym. J., 40, p.5 (2004). http://dx.doi.org/10.1016/j. eurpolymj.2003.10.020
10. Spain, S. G.; Gibson, M. I. & Cameron, N. R. - J. Polym. Chem., 45, p.2059 (2007). http://dx.doi.org/10.1002/ pola.22106
11. Fraser, C. & Grubbs, R. H. - Macromolecules, 28, p.7248 (1995). http://dx.doi.org/10.1021/ma00125a030
12. Mortell, K. H.; Gingras, M. & Kiessling, L. L. J. - Am. Chem. Soc., 118, p.209 (1996). http://dx.doi.org/10.1021/ ja953574q
13. Lowe, A. B.; Sumerlin, B. S. & McCormick, C. L. - Polymer, 44, p.6761 (2003). http://dx.doi.org/10.1016/j. polymer.2003.08.039
14. Albertin, L.; Kohlert, C.; Stenzel, M.; Foster, L. J. R. & Davis, T. P. - Biomacromolecules, 5, p.255 (2004). PMid:15002981. http://dx.doi.org/10.1021/bm034199u
15. Albertin, L.; Barner-Kowollik, C.; Stenzel, M. & Davis, T. P. - Polymer, 47, p.1011 (2006). http://dx.doi.org/10.1016/j. polymer.2005.12.069
16. Ohno, K.; Tsujii, Y. & Fukuda, T. J. - Polym. Chem., 36, p.2473 (1998). http://dx.doi.org/10.1002/(SICI)1099- 0518(199810)36:14<2473::AID-POLA5>3.0.CO;2-U
17. Liang, Y. Z.; Li, Z. C.; Chen, G. Q. & Li, F. M. - Polym. Int., 48, p.739 (1999). http://dx.doi.org/10.1002/(SICI)1097- 0126(199909)48:9<739::AID-PI283>3.3.CO;2-Y
18. Ladmiral, V.; Monaghan, L.; Mantovani, G. & Haddleton, D. M. - Polymer, 46, p.8536 (2005). http://dx.doi. org/10.1016/j.polymer.2005.01.104
19. Narain, R. & Armes, S. P. - Chem. Commun., 23, p.2776 (2002). http://dx.doi.org/10.1039/b208654a
20. Chen, Y. M. & Wulff, G. - Macromol. Rapid Commun., 23, p.59 (2002). http://dx.doi.org/10.1002/1521- 3927(20020101)23:1<59::AID-MARC59>3.0.CO;2-V
21. Grande, D.; Baskaran, S.; Baskaran, C.; Gnanou, Y. & Chaikof, E. L. - Macromolecules, 33, p.1123 (2000). http:// dx.doi.org/10.1021/ma991579s
22. Sun, X. L.; Grande, D.; Baskaran, S.; Hanson, S. R. & Chaikof, E. L. Biomacromolecules, 3, p.1065 (2002). PMid:12217054. http://dx.doi.org/10.1021/bm025561s
23. Wu, P.; Malkoch, M.; Hunt, J. N.; Vestberg, R.; Kaltgrad, E.; Finn, M. G.; Fokin, V. V.; Sharpless, K. B. & Hawker, C. J. - Chem. Commun., 46, p.5775 (2005). PMid:16307142. http://dx.doi.org/10.1039/b512021g
24. Srinvasachari, S.; Liu, Y.; Zhang, G.; Prevette, L. & Reineke, T. M. - Am. Chem. Soc., 128, p.8176 (2006).
25. Clode, D. M. - Chem Rev., 79, p.491 (1979).
26. Xavier, N. M. & Rauter, A. P. - Carbohydrate Res., 343, p.1523 (2008). http://dx.doi.org/10.1016/j. polymdegradstab.2010.03.003
27. Lee, S.; Jin, B. S. & Lee, J. W. - Macromol. Res., 14, p.491 (2006). http://dx.doi.org/10.1016/j. polymdegradstab.2010.05.011
28. Wang, D.; Das, A.; Leuteritz, A.; Boldt, R.; Häußler, L.; Wagenknecht, U. & Heinrich, G. - Polym. Degrad. Stabil., 96, p.285 (2010). http://dx.doi.org/10.1016/j. eurpolymj.2006.12.018
29. Yuzay, I. E.; Auras, R.; Soto-Valdez. & Selke H. S. - Polym. Degrad. Stabil., 95, p.1769 (2010). http:// dx.doi.org/10.1002/1097-4628(20010502)80:5<776::AIDAPP1154> 3.0.CO;2-8
30. Hamciuc, C.; Vlad-Bubulac, T.; Petreus, O. & Lisa, G. - Eur. Polym. J., 43, p.980 (2007).
31. Fraga, F. & Nũňez, E. R. - J. Appl. Polym. Sci., 80, p.776 (2001). http://dx.doi.org/10.1016/j.tca.2006.07.022
32. Dogan, F.; Akat, H.; Balcan, M.; Kaya, I. & Yurekli, M. - J. Appl. Polym. Sci., 108, p.2328 (2008). http://dx.doi. org/10.1021/ja01273a502
33. Janković, B.; Adnađević, B. & Jovanović, J. - Thermochimica Acta, 452, p.106 (2007).
34. Grunenberg, H. V.; Bredt, C. & Freudenberg, W. J. - Am. Chem. Soc., 60, p.507 (1938). PMid:15498015. http:// dx.doi.org/10.1021/jo048957y
35. Fréchet, J. M. J.; Kelly, J. & Sherrington, D. C. - Polymer, 35, p.1491 (1984). http://dx.doi.org/10.1002/app.36888
36. Barros, M. T.; Petrova, K. T. & Ramos, AM. - J. Org. Chern., 69, p.7772 (2004).
37. Yildirim, Y.; Dogan, B.; Muglali S.; Saltan, F.; Ozkan, M. & Akat, H. - J. Appl. Polym. Sci., 126, p.1236 (2012).
38. Ahmad, Z.; Al-Awadi, N. A & Al-Sagheer, F. - Polym. Degrad. Stabil., 93, p.456 (2008).