Analysis of Poly(Lactic-co-Glycolic Acid)/Poly(Isoprene) Polymeric Blend for Application as Biomaterial
Marques, Douglas Ramos; Santos, Luis Alberto dos; Schopf, Luciano Ferraz; Fraga, José Carlos S. de
http://dx.doi.org/10.4322/polimeros.2013.099
Polímeros: Ciência e Tecnologia, vol.23, n5, p.579-584, 2013
Abstract
The application of renewable raw materials encourages research in the biopolymers area. The Poly(Lacticco- Glycolic Acid)/Poly(Isoprene) (PLGA/IR) blend combines biocompatibility for application in the health field with excellent mechanical properties. The blend was obtained by solubilization of polymers in organic solvents. To investigate the polymer thermochemical properties, FTIR and DSC were applied. To investigate the composition’s influence over polymer mechanical properties, tensile and hardness test were applied. To analyze the blends response in the cell environment, a stent was produced by injection molding process, and Cell Viability Test and Previous Implantability were used. The Infrared spectra show that chemical composition is related only with polymers proportion in the blend. The calorimetry shows a partial miscibility in the blend. The tensile test shows that adding Poly(Isoprene) to Poly(Lactic-co-Glycolic Acid) induced a relevant reduction in the Young modulus, tensile stress and tenacity of the material, which was altered from the fragile raw PLGA to a ductile material. The composition did not affect the blend hardness. The cell viability test shows that the blend has potential application as biomaterial, while the first results of implantability indicate that the polymeric stent kept its original position and caused low fibrosis.
Keywords
PLGA, latex, FTIR, DSC, tensile, hardness, implantability, cell viability
References
1. Kadla, J. & Kubo S. – Compos, 35, p.395 (2003).
2. Pandey, A.; Pandey, G. & Aswath, P. - J. Mech. Behav. Biomed. Mat., 1, p.227 (2008). PMid:19627787. http:// dx.doi.org/10.1016/j.jmbbm.2007.12.001
3. Rezende, C. A. & Duek, E. A. R. - Polímeros, 13, p.36 (2003). http://dx.doi.org/10.1590/S0104-14282003000100009
4. Isotalo, T. M.; Nuutine, J. P.; Vaajanen, A.; Martikainen, P.; Laurila, M.; Törmälä, P.; Talja, M. & Tammela, T. L. - BJU Intern., 97, p.856 (2005).
5. Balabanian, C. A.; Coutinho-Netto, J.; Lamano-Carvalho, T. L.; Lacerda, S. A. & Brentegani, L. G. - J. Oral Sci., 48, p.201 (2006). http://dx.doi.org/10.2334/josnusd.48.201
6. Mano, E. B. – “Química Experimental de Polímeros”, Edgard Blücher, São Paulo (2004).
7. Stevens, M. P. – “Polymer Chemistry: An Introduction”, Oxford University Press, New York (1999).
8. Chen, C. C.; Chueh, J. Y.; Tseng, H.; Huang, H. M. & Lee, S. Y. – Biomat., 24, p.1167 (2003). http://dx.doi. org/10.1016/S0142-9612(02)00466-0
9. Lipatov, Y. - Prog. Pol. Sci., 27, p.1721 (2002). http:// dx.doi.org/10.1016/S0079-6700(02)00021-7
10. Jin, H. J.; Chin, I. J.; Kim, M. N.; Kim, S. H. & Yoon, J. S. – Eur. Pol. J., 36, p.165 (2000). http://dx.doi.org/10.1016/ S0014-3057(99)00041-5
11. Talja, M.; Tammela, T.; Petas, A.; Valimaa, T.; Taari, K.; Biherkoski, E. & Tormala, P. - J. Urol., 154, p.2089 (1995). http://dx.doi.org/10.1016/S0022-5347(01)66702-8
12. Tsutsui, H.; Kubota, M.; Yamada, M.; Suzuki, A.; Usuda, J.; Shibuya, H.; Miyajima, K.; Sugino, K.; Ito, K.; Furukawa, K. & Kato, H. – As. Pacif. Soc. Respir., 13, p.632 (2008).
13. Wood, D. E.; Liu, Y. H.; Vallières, E.; Jones, R. K. & Mulligan, M. S. – Ann. Thor. Surg., 76, p.167-174 (2003). http://dx.doi.org/10.1016/S0003-4975(03)00033-X
14. Dumon, J. F. - Chest, 97, p.328 (1990). PMid:1688757. http://dx.doi.org/10.1378/chest.97.2.328
15. Thistlethwaite, P. A.; Yung, G.; Kemp, A.; Osbourne, S.; Jamieson, S. W.; Channick, C. & Harrell, J. – J. Thor. Card. Surg., 136, p.1569 (2008). PMid:19114208. http://dx.doi. org/10.1016/j.jtcvs.2008.08.021
16. Xavier, R. G.; Sanches, P. R. S.; Macedo Neto, A. V.; Kuhl, G.; Vearick, S. B. & Michelon, M. D. O. – J. Bras. Pneum., 34, p.21 (2007). http://dx.doi.org/10.1590/S1806- 37132008000100005
17. Brouwer, A. M.; Raja, T. N.; Biemans, K.; Nabuurs, T. & Tennebroek, R. - Ann. N.Y. Acad. Sci., 1130, p.157(2008). PMid:18596344. http://dx.doi.org/10.1196/ annals.1430.014
18. Mano, E. B. – “Polímeros como Materiais de Engenharia”, Edgard Blücher, São Paulo (2004).
19. Antoniou, E. & Alexandridis, P. - Eur. Pol. J., 46, p.324 (2010). http://dx.doi.org/10.1016/j.eurpolymj.2009.10.005
20. Callister Junior, W. D. – “Materials Science and Engineering: an Introduction”, John Wiley & Sons Inc, Salt Lake City (1997).
21. Hanson, S.; Lalor, P. A.; Niemi, S. M.; Northup, S. J.; Ratner, B. D.; Spector, M.; Vale, B.H. & Willson, J. E. - “Testing Biomaterials”, in: Biomaterials Science, D. B. Ratner ed., Academic Press, San Diego (1996). http:// dx.doi.org/10.1016/B978-0-08-050014-0.50010-9
22. Dos Santos, R. L.; Pithon, M. M.; Martins, F. O.; Romanos, M. T. V. & Ruellas, A. C. O. – Orth. Cran. Res., 13, p.28 (2010). PMid:20078792. http://dx.doi.org/10.1111/j.1601- 6343.2009.01469.x
23. Mee, C. J.; Harris, H. J.; Farquhar, M. J.; Wilson, G.; Reynolds, G.; Davis, C.; Ijzendoorn, S. C. D.; Balfe, P. & McKeating, J. S. - J. Virol., 83, p.6211 (2009).
24. Koschutnig, K.; Heikkinen, S.; Kemmo, S.; Lampi, A. M.; Piironen, V. & Wagner, K. H. – Toxic. InVit., 23, p.755 (2009). PMid:19328846. http://dx.doi.org/10.1016/j. tiv.2009.03.007
25. Tsuneizumi, Y.; Kuwahara, M.; Okamoto, K. & Matsumura, S. - Pol. Degrad. Stab., 95, p.1387 (2010). http://dx.doi. org/10.1016/j.polymdegradstab.2010.01.019
26. Motta, A. C. & Duek, E. A. R. – Rev. Mat., 11, p.340 (2006).
27. Motta, A. C. & Duek, E. A. R.- Polímeros, 16, p.26 (2006). http://dx.doi.org/10.1590/S0104-14282006000100008
28. Cibulková, Z.; Polovková, J.; Lukes, V. & Klein, E. - J. Therm. Anal. Calorim., 84, p.709 (2006). http://dx.doi. org/10.1007/s10973-005-7547-1
29. Klöpffer, W. – “Introduction to Polymer Spectroscopy”, Springer-Verlag, Frankfurt (1984). http://dx.doi. org/10.1007/978-3-642-69373-1
30. Queiroz, D. P. – “Diagrama de fases, propriedades térmicas e morfológicas de blendas de Poli (ácido láctico) e Poli (metacrilato de metila)”, Tese de Doutorado, Universidade Estadual de Campinas, Brasil (2000).
31. Silverstein, R. M. – “Identificação Espectrométrica de Compostos Orgânicos”, LTC, Rio de Janeiro (2005).
32. Jahno, V. D – “Síntese e Caracterização de Poli (L-Ácido Láctico) para Uso como Biomaterial”, Dissertação de Mestrado, Universidade Federal do Rio Grande do Sul, Brasil (2005).
33. Ciesielski, A. – “An Introduction to Rubber Technology”, Rapra Technology Limited, Shawbury (1999).
34. Upadhyay, D.; Mohanty, S.; Nayak, S. K.; Parvaiz, M. R. & Panda, B. P. - App. Pol. Sci., 120, p.932 (2011). http:// dx.doi.org/10.1002/app.33106
35. Siddaramaiah, M. N.; Kumar, M. N. S. & Nando, G. B. - J. App. Pol. Sci., 121, p.3070 (2010). http://dx.doi. org/10.1002/app.33957
36. American Society for Testing and Materials – ASTM. - “D2240: Standard Test Method for Rubber Material – Durometer Hardness”, West. Conshohocken, 8 p. (2000).
37. Associação Brasileira de Normas Técnicas - ABNT. - “NBR ISO 10993-01”, Rio de Janeiro (2003).
38. Franz, A.; König, F.; Skolka, A.; Sperr, W.; Bauer, P.; Lucas, T.; Watts, D. C. & Schedle, A. - Dent. Mater., 23, p.1438 (2007). PMid:17688932. http://dx.doi.org/10.1016/j. dental.2007.05.014
39. Hsu, C. L.; Shyu, M. H.; Lin, J. A.; Yen, G. C. & Fang, S. C. - Food Chem., 127, p.1 (2011).