Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.4322/polimeros.2013.099
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Analysis of Poly(Lactic-co-Glycolic Acid)/Poly(Isoprene) Polymeric Blend for Application as Biomaterial

Marques, Douglas Ramos; Santos, Luis Alberto dos; Schopf, Luciano Ferraz; Fraga, José Carlos S. de

Downloads: 17
Views: 1297

Abstract

The application of renewable raw materials encourages research in the biopolymers area. The Poly(Lacticco- Glycolic Acid)/Poly(Isoprene) (PLGA/IR) blend combines biocompatibility for application in the health field with excellent mechanical properties. The blend was obtained by solubilization of polymers in organic solvents. To investigate the polymer thermochemical properties, FTIR and DSC were applied. To investigate the composition’s influence over polymer mechanical properties, tensile and hardness test were applied. To analyze the blends response in the cell environment, a stent was produced by injection molding process, and Cell Viability Test and Previous Implantability were used. The Infrared spectra show that chemical composition is related only with polymers proportion in the blend. The calorimetry shows a partial miscibility in the blend. The tensile test shows that adding Poly(Isoprene) to Poly(Lactic-co-Glycolic Acid) induced a relevant reduction in the Young modulus, tensile stress and tenacity of the material, which was altered from the fragile raw PLGA to a ductile material. The composition did not affect the blend hardness. The cell viability test shows that the blend has potential application as biomaterial, while the first results of implantability indicate that the polymeric stent kept its original position and caused low fibrosis.

Keywords

PLGA, latex, FTIR, DSC, tensile, hardness, implantability, cell viability

References



1. Kadla, J. & Kubo S. – Compos, 35, p.395 (2003).

2. Pandey, A.; Pandey, G. & Aswath, P. - J. Mech. Behav. Biomed. Mat., 1, p.227 (2008). PMid:19627787. http:// dx.doi.org/10.1016/j.jmbbm.2007.12.001

3. Rezende, C. A. & Duek, E. A. R. - Polímeros, 13, p.36 (2003). http://dx.doi.org/10.1590/S0104-14282003000100009

4. Isotalo, T. M.; Nuutine, J. P.; Vaajanen, A.; Martikainen, P.; Laurila, M.; Törmälä, P.; Talja, M. & Tammela, T. L. - BJU Intern., 97, p.856 (2005).

5. Balabanian, C. A.; Coutinho-Netto, J.; Lamano-Carvalho, T. L.; Lacerda, S. A. & Brentegani, L. G. - J. Oral Sci., 48, p.201 (2006). http://dx.doi.org/10.2334/josnusd.48.201

6. Mano, E. B. – “Química Experimental de Polímeros”, Edgard Blücher, São Paulo (2004).

7. Stevens, M. P. – “Polymer Chemistry: An Introduction”, Oxford University Press, New York (1999).

8. Chen, C. C.; Chueh, J. Y.; Tseng, H.; Huang, H. M. & Lee, S. Y. – Biomat., 24, p.1167 (2003). http://dx.doi. org/10.1016/S0142-9612(02)00466-0

9. Lipatov, Y. - Prog. Pol. Sci., 27, p.1721 (2002). http:// dx.doi.org/10.1016/S0079-6700(02)00021-7

10. Jin, H. J.; Chin, I. J.; Kim, M. N.; Kim, S. H. & Yoon, J. S. – Eur. Pol. J., 36, p.165 (2000). http://dx.doi.org/10.1016/ S0014-3057(99)00041-5

11. Talja, M.; Tammela, T.; Petas, A.; Valimaa, T.; Taari, K.; Biherkoski, E. & Tormala, P. - J. Urol., 154, p.2089 (1995). http://dx.doi.org/10.1016/S0022-5347(01)66702-8

12. Tsutsui, H.; Kubota, M.; Yamada, M.; Suzuki, A.; Usuda, J.; Shibuya, H.; Miyajima, K.; Sugino, K.; Ito, K.; Furukawa, K. & Kato, H. – As. Pacif. Soc. Respir., 13, p.632 (2008).

13. Wood, D. E.; Liu, Y. H.; Vallières, E.; Jones, R. K. & Mulligan, M. S. – Ann. Thor. Surg., 76, p.167-174 (2003). http://dx.doi.org/10.1016/S0003-4975(03)00033-X

14. Dumon, J. F. - Chest, 97, p.328 (1990). PMid:1688757. http://dx.doi.org/10.1378/chest.97.2.328

15. Thistlethwaite, P. A.; Yung, G.; Kemp, A.; Osbourne, S.; Jamieson, S. W.; Channick, C. & Harrell, J. – J. Thor. Card. Surg., 136, p.1569 (2008). PMid:19114208. http://dx.doi. org/10.1016/j.jtcvs.2008.08.021

16. Xavier, R. G.; Sanches, P. R. S.; Macedo Neto, A. V.; Kuhl, G.; Vearick, S. B. & Michelon, M. D. O. – J. Bras. Pneum., 34, p.21 (2007). http://dx.doi.org/10.1590/S1806- 37132008000100005

17. Brouwer, A. M.; Raja, T. N.; Biemans, K.; Nabuurs, T. & Tennebroek, R. - Ann. N.Y. Acad. Sci., 1130, p.157(2008). PMid:18596344. http://dx.doi.org/10.1196/ annals.1430.014

18. Mano, E. B. – “Polímeros como Materiais de Engenharia”, Edgard Blücher, São Paulo (2004).

19. Antoniou, E. & Alexandridis, P. - Eur. Pol. J., 46, p.324 (2010). http://dx.doi.org/10.1016/j.eurpolymj.2009.10.005

20. Callister Junior, W. D. – “Materials Science and Engineering: an Introduction”, John Wiley & Sons Inc, Salt Lake City (1997).

21. Hanson, S.; Lalor, P. A.; Niemi, S. M.; Northup, S. J.; Ratner, B. D.; Spector, M.; Vale, B.H. & Willson, J. E. - “Testing Biomaterials”, in: Biomaterials Science, D. B. Ratner ed., Academic Press, San Diego (1996). http:// dx.doi.org/10.1016/B978-0-08-050014-0.50010-9

22. Dos Santos, R. L.; Pithon, M. M.; Martins, F. O.; Romanos, M. T. V. & Ruellas, A. C. O. – Orth. Cran. Res., 13, p.28 (2010). PMid:20078792. http://dx.doi.org/10.1111/j.1601- 6343.2009.01469.x

23. Mee, C. J.; Harris, H. J.; Farquhar, M. J.; Wilson, G.; Reynolds, G.; Davis, C.; Ijzendoorn, S. C. D.; Balfe, P. & McKeating, J. S. - J. Virol., 83, p.6211 (2009).

24. Koschutnig, K.; Heikkinen, S.; Kemmo, S.; Lampi, A. M.; Piironen, V. & Wagner, K. H. – Toxic. InVit., 23, p.755 (2009). PMid:19328846. http://dx.doi.org/10.1016/j. tiv.2009.03.007

25. Tsuneizumi, Y.; Kuwahara, M.; Okamoto, K. & Matsumura, S. - Pol. Degrad. Stab., 95, p.1387 (2010). http://dx.doi. org/10.1016/j.polymdegradstab.2010.01.019

26. Motta, A. C. & Duek, E. A. R. – Rev. Mat., 11, p.340 (2006).

27. Motta, A. C. & Duek, E. A. R.- Polímeros, 16, p.26 (2006). http://dx.doi.org/10.1590/S0104-14282006000100008

28. Cibulková, Z.; Polovková, J.; Lukes, V. & Klein, E. - J. Therm. Anal. Calorim., 84, p.709 (2006). http://dx.doi. org/10.1007/s10973-005-7547-1

29. Klöpffer, W. – “Introduction to Polymer Spectroscopy”, Springer-Verlag, Frankfurt (1984). http://dx.doi. org/10.1007/978-3-642-69373-1

30. Queiroz, D. P. – “Diagrama de fases, propriedades térmicas e morfológicas de blendas de Poli (ácido láctico) e Poli (metacrilato de metila)”, Tese de Doutorado, Universidade Estadual de Campinas, Brasil (2000).

31. Silverstein, R. M. – “Identificação Espectrométrica de Compostos Orgânicos”, LTC, Rio de Janeiro (2005).

32. Jahno, V. D – “Síntese e Caracterização de Poli (L-Ácido Láctico) para Uso como Biomaterial”, Dissertação de Mestrado, Universidade Federal do Rio Grande do Sul, Brasil (2005).

33. Ciesielski, A. – “An Introduction to Rubber Technology”, Rapra Technology Limited, Shawbury (1999).

34. Upadhyay, D.; Mohanty, S.; Nayak, S. K.; Parvaiz, M. R. & Panda, B. P. - App. Pol. Sci., 120, p.932 (2011). http:// dx.doi.org/10.1002/app.33106

35. Siddaramaiah, M. N.; Kumar, M. N. S. & Nando, G. B. - J. App. Pol. Sci., 121, p.3070 (2010). http://dx.doi. org/10.1002/app.33957

36. American Society for Testing and Materials – ASTM. - “D2240: Standard Test Method for Rubber Material – Durometer Hardness”, West. Conshohocken, 8 p. (2000).

37. Associação Brasileira de Normas Técnicas - ABNT. - “NBR ISO 10993-01”, Rio de Janeiro (2003).

38. Franz, A.; König, F.; Skolka, A.; Sperr, W.; Bauer, P.; Lucas, T.; Watts, D. C. & Schedle, A. - Dent. Mater., 23, p.1438 (2007). PMid:17688932. http://dx.doi.org/10.1016/j. dental.2007.05.014

39. Hsu, C. L.; Shyu, M. H.; Lin, J. A.; Yen, G. C. & Fang, S. C. - Food Chem., 127, p.1 (2011).
588371987f8c9d0a0c8b498f polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections