Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.4322/polimeros.2013.054
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Application of cationic hemicelluloses produced from corn husk as polyelectrolytes in sewage treatment

Landim, Alan Soares; Rodrigues Filho, Guimes; Sousa, Raquel Maria F.; Ribeiro, Elaine Angélica M.; Souza, Fulvio Rafael B. de; Vieira, Julia G.; Assunção, Rosana M. N.; Cerqueira, Daniel A.

Downloads: 0
Views: 281

Abstract

Hemicelluloses were extracted from corn husk and converted into cationic hemicelluloses using 2,3-epoxypropyltrimethylammonium chloride. The degree of substitution was determined as 0.43 from results of elemental analysis. The cationic derivative was also characterized by Fourier transform infrared spectroscopy and Carbon-13 magnetic nuclear ressonance. The produced polymer was employed as coagulant aid in a sewage treatment station (STS) of the municipal department of water and sewer (Departamento Municipal de Água e Esgoto - DMAE) in Uberlândia-Minas Gerais, Brazil, using Jar test experiments. Its performance was compared to ACRIPOL C10®, a commercial cationic polyacrylamide regularly used as a coagulant at the STS. The best result of the jar-test essays was obtained when using cationic hemicelluloses (10 mg L-1) as coagulant aid and ferric chloride as coagulant (200 mg L-1). The results of color and turbidity reduction, 37 and 39 %, respectively, were better than when using only ferric chloride. These results were also higher than those of commercial polyacrylamide, on the order of 32.4 and 38.7%, respectively. The results showed that the cationic hemicelluloses presented similar or even superior performance when compared to ACRIPOL C10®, demonstrating that the polyelectrolytes produced from recycled corn husks can replace commercial polymers in sewage treatment stations.

Keywords

cationic hemicelluloses, corn husk, flotation, sewage treatment

References

1. Di Bernardo, L. & Dantas, A. D. B. - "Métodos e técnicas de tratamento de água", RiMa, 2ª ed., v.1, São Carlos (2005).

2. Bolto, B. & Gregory, J. – Water Res., 41, p.2301 (2007).

3. Satyawali, Y. & Balakrishnan, M. - J. Environ. Manage., 86, p.481 (2008). 4. Ren, J. L.; Sun, R. C.; Liu, C. F.; Chao, Z. Y. & Luo, W. - Polym. Degrad. Stab., 91, p.2579 (2006).

5. Silva, S. S., Carvalho, R. R., Fonseca, J. L. C. & Garcia, R. B. - Polímeros: Ciência e Tecnologia, 2, p. 25 (1998).

6. Fengel, D. & Wegener, G., - “Wood: Chemistry, Ultrastructure, Reactions.” Walter De Gruyter Inc, Germany (1984).

7. Gáspár, M., Kálmán, G. & Réczey, K., Process Biochem., 42, p.1135 (2007).

8. Ren, J. L.; Liu, C. F.; Sun, R. C.; She, D. & Liu. J. C. - E-Polymers, 61, p.01 (2007).

9. Ren, J. L.; Peng, F.; Sun, R. C.; Liu, C. F.; Cao, Z. N.; Luo, W. & Tang, J. N. - J. Appl. Polym. Sci., 109, p.2711 (2008).

10. Ren, J. L.; Peng, F.; Sun, R. C. & Kennedy, J. F. - Carbohydr. Polym., 75, p.338 (2009).

11. Liu, Z.; Ni, Y.; Fatehi, P. & Saeed, A. - Biomass Bioenergy, 35, p.1789 (2011).

12. Bigand, B.; Pinel, C.; Perez, D. S.; Rataboul, F.; Huber, P. & Petit-Conil, M., Carbohydr. Polym., 85, p. 138 (2011).

13. Vieira, R. G. P.; Rodrigues Filho, G.; Assunção, R. M. N.; Meireles, C. S.; Vieira, J. G. & Oliveira, G. S. - Carbohydr. Polym., 67, p.182 (2007).

14. Schwikal, K.; Heinze, T.; Ebringerova, A. & Petzold, K. - Macromol. Symp., 232, p.49 (2006).

5883718d7f8c9d0a0c8b495a polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections