PMMA/Ca2+ Bone Cements. Hydrolytic Properties and Bioactivity
Ramos, Adrián P.; Ruiz, Jesús E. G.; Hernández, Mónica L.; Éstevez, Gastón F.; Sánchez, Carlos A. T.
http://dx.doi.org/10.1590/S0104-14282012005000067
Polímeros: Ciência e Tecnologia, vol.22, n4, p.390-394, 2012
Abstract
Bone cements of poly (methyl methacrylate) (PMMA) have been used for about 40 years to fix artificial prosthesis to bone structure. The aim of this study was to evaluate the absorption, solubility, degradation and bioactivity of novel formulations of PMMA/Ca2+ bone cements. These properties were evaluated using a fractional experimental design. Hydrolytic parameters were determined, from which we found that 7/8 of the formulations for absorption and 6/8 for solubility fulfill the ISO 4049:2000 requirements. The final degradation values ranged between 1 and 5%, except for one of the formulations. Besides, some formulations showed bioactivity after seven days of immersion in SBF solution.
Keywords
PMMA cements, hydroxyapatite, calcium carbonate
References
1. Morejón, L.; Mendizábal, E.; Delgado, J. A.; Davidenko, N.; López, D.
F.; Manríquez, R.; Ginebra, M. P.; Gil, F. J. & Planell, J. A. - Latin Am.
Appl. Res., 35, p.175 (2005).
2. Virto, M.; Frutos, P.; Torrado, S. & Frutos, G. - Biomaterials, 24, p.79 (2003). http://dx.doi.org/10.1016/S0142-9612(02)00254-5
3. López, M. - Rev. CENIC Cienc. Quim., 37, p.77 (2006).
4. Silva, P.; Albano, C.; Perera, R. & Domínguez, N. - Radiat. Phys. Chem., 79, p.358 (2010). http://dx.doi.org/10.1016/j. radphyschem.2009.08.023
5. González, G. - “Procedimiento técnico PTPP.01” (2011).
6. González, R. & Melo, M.C.- “Procedimiento para la obtención de hidroxiapatita para uso cromatográfico”, Patente CU 22180 A1 (1996).
7. International Organization for Standardization. - “ISO 4049: Dentistry - Polymer-based filling, restorative and luting materials, International Standard Organization”, 3rd ed, ISO (2000).
8. Mack, E. J.; Okano, T. & Kim, S. W. - “Hydrogels in medicine and pharmacy-polymers”, Boca Raton, USA (1988).
9. Haas, S. S.; Brauer, G. M. & Dickson, M. A. - J. Bone Joint Surg., 57, p.380 (1975).
10. López, M.; Fuentes, G.; González, R.; González, J.; Peón, E. & Toledo, C. - Latin Am. Appl. Res., 38, p.228 (2008).
11. Veranes, Y.; Correa, D.; Martin, J. M.; Krael, R. & Alvarez, R. - Latin Am. Appl. Res., 36, p.1 (2006).
12. Espigares, I.; Elvira, C.; Mano, J.; Vazquéz, B.; San Román, J. & Reis, R. - Biomaterials, 23, p.1883 (2002). http://dx.doi.org/10.1016/S0142- 9612(01)00315-5
13. Reis, R.L.; Cunha, A.M.; Fernandes, M.H. & Correia, R.N. – J. Mater. Sci.: Mater. Med., 8, p. 897 (1997).
2. Virto, M.; Frutos, P.; Torrado, S. & Frutos, G. - Biomaterials, 24, p.79 (2003). http://dx.doi.org/10.1016/S0142-9612(02)00254-5
3. López, M. - Rev. CENIC Cienc. Quim., 37, p.77 (2006).
4. Silva, P.; Albano, C.; Perera, R. & Domínguez, N. - Radiat. Phys. Chem., 79, p.358 (2010). http://dx.doi.org/10.1016/j. radphyschem.2009.08.023
5. González, G. - “Procedimiento técnico PTPP.01” (2011).
6. González, R. & Melo, M.C.- “Procedimiento para la obtención de hidroxiapatita para uso cromatográfico”, Patente CU 22180 A1 (1996).
7. International Organization for Standardization. - “ISO 4049: Dentistry - Polymer-based filling, restorative and luting materials, International Standard Organization”, 3rd ed, ISO (2000).
8. Mack, E. J.; Okano, T. & Kim, S. W. - “Hydrogels in medicine and pharmacy-polymers”, Boca Raton, USA (1988).
9. Haas, S. S.; Brauer, G. M. & Dickson, M. A. - J. Bone Joint Surg., 57, p.380 (1975).
10. López, M.; Fuentes, G.; González, R.; González, J.; Peón, E. & Toledo, C. - Latin Am. Appl. Res., 38, p.228 (2008).
11. Veranes, Y.; Correa, D.; Martin, J. M.; Krael, R. & Alvarez, R. - Latin Am. Appl. Res., 36, p.1 (2006).
12. Espigares, I.; Elvira, C.; Mano, J.; Vazquéz, B.; San Román, J. & Reis, R. - Biomaterials, 23, p.1883 (2002). http://dx.doi.org/10.1016/S0142- 9612(01)00315-5
13. Reis, R.L.; Cunha, A.M.; Fernandes, M.H. & Correia, R.N. – J. Mater. Sci.: Mater. Med., 8, p. 897 (1997).