Investigação da Influência do Processamento na Dinâmica Molecular de Nanocompósitos de Policarbonato e Argila Organofílica Obtidos via Intercalação por Fusão
On the Influence of Processing Parameters on the Molecular Dynamics of Melt Intercalated Polycarbonate‑clay Nanocomposites
Rodrigues, Elton J. da R.; Nascimento, Suéllen A. M.; Tavares, Maria I. B.; Merat, Pedro P.
http://dx.doi.org/10.1590/S0104-14282012005000058
Polímeros: Ciência e Tecnologia, vol.22, n5, p.436-439, 2012
Resumo
Nanocompósitos baseados em policarbonato e argila organofílica foram obtidos pelo método de intercalação por fusão em câmara de mistura sob diferentes valores de torque e temperatura. A influência desses parâmetros na qualidade da dispersão da argila na matriz polimérica foi investigada por ressonância magnética nuclear (RMN) de baixo campo, empregando o tempo de relaxação longitudinal, T1H, e por difração de raios X. As diferenças nos tempos de relaxação longitudinal e nos padrões de difração de raios X foram correlacionadas com a formação de domínios com mobilidades distintas. O nanomaterial formado apresentou morfologia intercalada com afastamento crescente das camadas de argila, conforme as condições de processamento se tornavam mais severas. A RMN 1H mostrou que tanto o cisalhamento quanto a temperatura afetaram a mobilidade das cadeias poliméricas, explicitando a homogeneidade crescente da distribuição dos domínios de relaxação, de acordo com o aumento do torque e da temperatura.
Palavras-chave
Nanocompósito, intercalação por fusão, RMN
Abstract
Polycarbonate-organofilic clay nanocomposites were obtained via the melt intercalation method in the blending chamber of a torque rheometer, under distinct values of shear and temperature. The influence of those processing parameters on the clay dispersion in the polymer matrix was probed by low-field nuclear magnetic resonance (NMR), using the T1H measurement technique and by wide angle X-ray scattering (WAXS). The differences in longitudinal relaxation times and in the X-ray reflection patterns were correlated with the formation of relaxation domains with particular molecular mobility, as progressively larger intercalated morphologies were found in the nanocomposites due to the increase of shear stress and temperature. 1H NMR has shown that both shearing and temperature have played a fundamental part on the polymer chains mobility, which explains the increase in the domain´s homogeneity following the increment of those processing parameters.
Keywords
Nanocomposite, melt intercalation, NMR
References
1. Pavlidou, S. & Papaspyrides, C.D. - Prog. Polym. Sci., 33, p.1119
(2008). http://dx.doi.org/10.1016/j.progpolymsci.2008.07.008
2. Ray, S. S. & Okamoto, M. - Prog. Polym. Sci., 28, p.1539 (2003). http://dx.doi.org/10.1016/j.progpolymsci.2003.08.002
3. Liu, T.; Burger, C. & Chu, B. - Prog. Polym. Sci., 28, p.5 (2003). http:// dx.doi.org/10.1016/S0079-6700(02)00077-1
4. Giannelis, E. P. - Adv. Mater., 8, p.29 (1996). http://dx.doi.org/10.1002/ adma.19960080104
5. Le Baron, P. C.; Wang, Z. & Pinnavaia, T. J. - Appl. Clay Sci., 15, p.11 (1999). http://dx.doi.org/10.1016/S0169-1317(99)00017-4
6. Schmidt, D.; Shah, D. & Giannelis E.P. - Curr. Opin. Solid St. M., 6, p.205 (2002). http://dx.doi.org/10.1016/S1359-0286(02)00049-9
7. Shen, Z.; Simon, G. P. & Chrng, Y. - Polymer, 43, p.4251 (2002). http:// dx.doi.org/10.1016/S0032-3861(02)00230-6
8. Tang, Y.; Hu, Y.; Song, L.; Zong, R.; Gui, Z.; Chen, Z. & Fan, W. - Polym. Degrad. Stabil., 82, p.127 (2003). http://dx.doi.org/10.1016/S0141- 3910(03)00173-3
9. Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Kurauchi, T. & Kamigaito, O. - J. Polym. Sci., 31, p.1755 (1993). http://dx.doi. org/10.1002/pola.1993.080310714
10. Vu, T. Y.; Mark, J. E.; Pham, L. H. & Engelhartd, M. - J. Appl. Polym. Sci., 82, p.1391 (2001). http://dx.doi.org/10.1002/app.1976
11. Joly, S.; Gaunaud, G.; Ollitrault, R.; Bokobza, L. & Mark, J. E. - Chem. Mater., 14, p.4202 (2002). http://dx.doi.org/10.1021/cm020093e
12. Arroyo, M.; López-Manchado, M. A. & Herrero, B. - Polymer, 44, p.2447 (2003). http://dx.doi.org/10.1016/S0032-3861(03)00090-9
13. Gilman, J. W.; Jackson, C. L.; Morgan, A. B.; Harris, R. J.; Manias, E.; Giannelis, E. P.; Wuthenow, M.; Hilton, D. & Phillips, S. H. - Chem. Mater., 12, p.1866 (2000). http://dx.doi.org/10.1021/cm0001760
14. Alexandre, M. & Dubois, P. - Mater. Sci. Eng., 28, p.1 (2000).
15. Castelvetro, V. & Vita, C.D. - Adv. Colloid Interfac., 108-109, p.167 (2004). http://dx.doi.org/10.1016/j.cis.2003.10.017
16. Matejka, L.; Dusek, K.; Plestil, J.; Kriz, J. & Lednicky, F. - Polymer, 40, p.171 (1999). http://dx.doi.org/10.1016/S0032-3861(98)00214-6
17. Ji, X.L; Jing, J.K.; Jiang, W. & Jiang, B.Z. - Polym. Eng. Sci., 42, p.1023 (2002). http://dx.doi.org/10.1002/pen.11007
18. Esteves, A. C. C.; Timmons, A. B. & Trindade, T. - Quim. Nova, 27, p.798 (2004). http://dx.doi.org/10.1590/S0100-40422004000500020
19. Tavares, M.I.B.; Nogueira, R. F.; Gil, R. A. S. S.; Preto, M.; Silva, E. O.; Silva, M. B. R. & Miguez, E. - Polym. Test., 26, p.1100 (2007). http://dx.doi.org/10.1016/j.polymertesting.2007.07.012
2. Ray, S. S. & Okamoto, M. - Prog. Polym. Sci., 28, p.1539 (2003). http://dx.doi.org/10.1016/j.progpolymsci.2003.08.002
3. Liu, T.; Burger, C. & Chu, B. - Prog. Polym. Sci., 28, p.5 (2003). http:// dx.doi.org/10.1016/S0079-6700(02)00077-1
4. Giannelis, E. P. - Adv. Mater., 8, p.29 (1996). http://dx.doi.org/10.1002/ adma.19960080104
5. Le Baron, P. C.; Wang, Z. & Pinnavaia, T. J. - Appl. Clay Sci., 15, p.11 (1999). http://dx.doi.org/10.1016/S0169-1317(99)00017-4
6. Schmidt, D.; Shah, D. & Giannelis E.P. - Curr. Opin. Solid St. M., 6, p.205 (2002). http://dx.doi.org/10.1016/S1359-0286(02)00049-9
7. Shen, Z.; Simon, G. P. & Chrng, Y. - Polymer, 43, p.4251 (2002). http:// dx.doi.org/10.1016/S0032-3861(02)00230-6
8. Tang, Y.; Hu, Y.; Song, L.; Zong, R.; Gui, Z.; Chen, Z. & Fan, W. - Polym. Degrad. Stabil., 82, p.127 (2003). http://dx.doi.org/10.1016/S0141- 3910(03)00173-3
9. Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Kurauchi, T. & Kamigaito, O. - J. Polym. Sci., 31, p.1755 (1993). http://dx.doi. org/10.1002/pola.1993.080310714
10. Vu, T. Y.; Mark, J. E.; Pham, L. H. & Engelhartd, M. - J. Appl. Polym. Sci., 82, p.1391 (2001). http://dx.doi.org/10.1002/app.1976
11. Joly, S.; Gaunaud, G.; Ollitrault, R.; Bokobza, L. & Mark, J. E. - Chem. Mater., 14, p.4202 (2002). http://dx.doi.org/10.1021/cm020093e
12. Arroyo, M.; López-Manchado, M. A. & Herrero, B. - Polymer, 44, p.2447 (2003). http://dx.doi.org/10.1016/S0032-3861(03)00090-9
13. Gilman, J. W.; Jackson, C. L.; Morgan, A. B.; Harris, R. J.; Manias, E.; Giannelis, E. P.; Wuthenow, M.; Hilton, D. & Phillips, S. H. - Chem. Mater., 12, p.1866 (2000). http://dx.doi.org/10.1021/cm0001760
14. Alexandre, M. & Dubois, P. - Mater. Sci. Eng., 28, p.1 (2000).
15. Castelvetro, V. & Vita, C.D. - Adv. Colloid Interfac., 108-109, p.167 (2004). http://dx.doi.org/10.1016/j.cis.2003.10.017
16. Matejka, L.; Dusek, K.; Plestil, J.; Kriz, J. & Lednicky, F. - Polymer, 40, p.171 (1999). http://dx.doi.org/10.1016/S0032-3861(98)00214-6
17. Ji, X.L; Jing, J.K.; Jiang, W. & Jiang, B.Z. - Polym. Eng. Sci., 42, p.1023 (2002). http://dx.doi.org/10.1002/pen.11007
18. Esteves, A. C. C.; Timmons, A. B. & Trindade, T. - Quim. Nova, 27, p.798 (2004). http://dx.doi.org/10.1590/S0100-40422004000500020
19. Tavares, M.I.B.; Nogueira, R. F.; Gil, R. A. S. S.; Preto, M.; Silva, E. O.; Silva, M. B. R. & Miguez, E. - Polym. Test., 26, p.1100 (2007). http://dx.doi.org/10.1016/j.polymertesting.2007.07.012