Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/S0104-14282012005000055
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Análise Térmica da Poliacrilonitrila Plastificada com Glicerol em Extrusora

Thermal Analysis of Extruded Polyacrylonitrile Plasticized by Glycerol

Junior, Carlos A. R. Brito; Fleming, Robson R.; Pardini, Luiz C.; Alves, Nilton P.

Downloads: 0
Views: 1264

Resumo

Neste trabalho são apresentados resultados de análise térmica para poliacrilonitrila (PAN) plastificada com glicerina. Foram observados os efeitos da glicerina de alta pureza (glicerol) e demais aditivos à base de glicóis na fusão e degradação térmica da PAN pela técnica de DSC sob alta taxa de aquecimento (90 °C/min) e atmosfera inerte. Foi constatado que o glicerol reduziu a temperatura de fusão da PAN de 290 °C para 217 °C. Em uma etapa preliminar foi empregado o método de Kissinger para verificar o efeito da composição química da PAN sob sua degradação térmica. A energia de ativação aparente para o copolímero de PAN foi calculada em 149 kJ.mol–1. Sugeriu-se que a presença do comonômero acetato de vinila (AV) na composição química da PAN proporcionou menor entalpia de degradação (353 J.g–1) em comparação com outros comonômeros constituintes de uma PAN precursora de fibras de carbono (988 J.g–1).

Palavras-chave

Poliacrilonitrila, glicerina, análise térmica, método de Kissinger

Abstract

This paper presents results from thermal analysis of polyacrylonitrile (PAN) plasticized with glycerin, where effects from the high purity glycerin (glycerol) and other additives to glycol were studied. Using differential scanning calorimetry (DSC) at high heating rate (90 °C/min) and inert atmosphere, we observed a decrease in the melting temperature of PAN (from 290 °C to 217 °C) owing to the presence of glycerol. The Kissinger’s method was used to investigate the kinetics of thermal degradation for acrylonitrile (AN) with vinyl acetate (AV). The apparent activation energy for the copolymer AN/AV was calculated as 149 kJ.mol–1. The AV comonomer resulted in a lower degradation enthalpy for the copolymer AN/AV (353 J.g–1) compared with the comonomers comprising a precursor PAN for carbon fibers (988 J.g–1).

Keywords

Polyacrylonitrile, glycerin, thermal analysis, Kissinger’s method

References

1. Bajaj, P.; Paliwal, D. K. & Gupta, A. K. - J. Macromol. Sci. Chem.,

2. “Ullmann’s Encyclopedia of Chemical Technology”, 5th edition, VCH, Weinheim (1987).

3. Rajalingam, P. & Radhakrishnan, G. - JMS-REV. Macromol. Chem. Phys., 283, p.301 (1991).

4. Clarke, A. J. & Bailey, J. E. - Nature, 243, p.146 (1973). http://dx.doi. org/10.1038/243146a0

5. Hinrichsen, G.- J. Appl. Polym. Sci., 17, p.3305 (1973). http://dx.doi. org/10.1002/app.1973.070171106

6. Farsani, R. E.; Shokuhfar, A. & Sedghi, A. - PWASET, 26, p.513 (2007).

7. Farsani, R. E. et al. – WASET, 50, p.430 (2009).

8. Mathur, R. B.; Bahl, O. P. & Sivaram, P. – Curr. Sci., 62, p.662 (1992).

9. Fitzer, E. & Muller, D. J. – Carbon, 13, p.63 (1975). http://dx.doi. org/10.1016/0008-6223(75)90259-6

10. Xue, T. J.; McKinney, M. A. & Wilkie, C. A. - Polym. Degrad. Stab., 58, p.193 (1997). http://dx.doi.org/10.1016/S0141-3910(97)00048-7

11. Yu, M.; Wang, C.; Bai, Y.; Wang, Y.; Wang, Q. & Liu, H. - Polym. Bull., 57, p.525 (2006). http://dx.doi.org/10.1007/s00289-006-0581-8

12. Coleman, M. M. & Petcavich, R. J. - J. Polym. Sci.: Polym. Phys. Edn., 16, p. 821 (1978). http://dx.doi.org/10.1002/pol.1978.180160507

13. Petcavich, R. J.; Painter, P. C. & Coleman, M. M. - J. Polym. Sci.: Polym. Phys. Edn., 17, p.165 (1979). http://dx.doi.org/10.1002/ pol.1979.180170115

14. Coleman, M. M. & Sivy, G. T. - Carbon, 19, p.123, 1981. http://dx.doi. org/10.1016/0008-6223(81)90118-4

15. Coleman, M. M.; Sivy, G. T.; Painter, P. C.; Snyder, R. W. & Gordon III, B. - Carbon, 21, p.255 (1983). http://dx.doi.org/10.1016/0008- 6223(83)90089-1

16. Masson, J. C. - “Acrylic Fiber Technology and Applications”, Marcel Dekker, New York (1995).

17. Coxe, C. D. & Wilmington, D. E. - “Preparation of shaped articles from acrylonitrile polymers”, US Patent 2585444, 12 (1952).

18. Blickenstaff, R. A. – “Acrylonitrile polymer filaments”, US Patent 3984601, n.294, 184 (1976).

19. Porosoff, H. - “Melt spinning acrylonitrile polymers fibers”, US Patent 4163770 (1979).

20. DeMaria, F. & Young, C. C. - “Process for melt spinning acrylonitrile polymer fiber using hot water as stretching aid”, US Patent 4303607 (1981).

21. Pfeiffer, R. E. & Peacher, S. E. – “Spinnerette plate having multiple capillaries per counterbore for melt spinning fusion melts of acrylonitrile polymer and water”, US Patent 4318680 (1982).

22. Frushour, B. G. – Polym. Bull. 7, p.1 (1982).

23. Grove, D.; Desai, P.; Abhiraman, A. S. - Carbon, 26, p.403 (1988). http://dx.doi.org/10.1016/0008-6223(88)90233-3

24. Daumit, G. P. et al. - “Formation of melt-spun acrylic fibers which are particularly suited for thermal conversion to high strength carbon fibers”, US Patent 4921656 (1990).

25. Daumit, G. P. et al. - “Melt-spun acrylic fibers which are particularly suited for thermal conversion to high strength carbon fibers”, US Patent 4981751 (1991).

26. Atureliya, S. K. & Bashir, Z. - Polymer, 34, p.5116 (1993). http:// dx.doi.org/10.1016/0032-3861(93)90256-A

27. Yoon, H. S. et al. - “Non-spun, short, acrylic polymer, fibers”, US Patent 5434002, n.148, 629 (1995).

28. Yoon, H. S. et al. - “Unspun acrylic staple fibers”, US Patent 5589264, n.446, 287 (1996).

29. Smierciak, R. C.; Wardlow, J. E. & Ball, L. E. - “A process for making a high nitrile multipolymer prepared from acrylonitrile and olefinically unsaturated monomers”, WO Patent 1996/02/6968 (1996).

30. Smierciak, R. C.; Eddie, W. J. & Ball, L. E. - “Process for making an acrylonitrile, methacrylonitrile and olefinically unsaturated monomers”, US Patent 5602222, n.533, 230 (1997).

31. Liu, W.; Cheng, L.; Zhang, H.; Zhang, Y.; Wang, H. & Yu, M. - Int. J. Mol. Sci., 8, p.180 (2007). http://dx.doi.org/10.3390/i8030180

32. Yang, T.; Yao, Y.; Lin, Y.; Wang, B.; Xiang, R.; Wu, Y. & Wu, D. - Appl. Phys. A: Mater. Sci. Process., 98, p.517 (2009). http://dx.doi. org/10.1007/s00339-009-5483-9

33. Rogers, R. D. & Sedden, K. R. - Science, 302, p.792 (2003). Pmid:14593156. http://dx.doi.org/10.1126/science.1090313

34. Alves, N. P. - W.O Patent 147 224 (2007).

35. Wu, G. P. - Polym. Bull., 62, p.667 (2009). http://dx.doi.org/10.1007/ s00289-009-0039-x

36. Beatriz, A.; Araújo, Y. J. K. & Lima, D. P. - Quim. Nova, 34, p.306 (2011). http://dx.doi.org/10.1590/S0100-40422011000200025

37. Alves, N. P. - U.S Patent 0024939 A1 (2011).

38. American Society for Testing and Materials - ASTM. ASTM E 698‑79: Arrhenius kinetic constants for thermally unstable material. Philadelphia (1984).

39. Lee, J. S.; Hsu, C. K. & Chang, C. L. - Thermochim. Acta, 173, p.392 (1973).

40. Hou, C.; Qu, R.; Qun, W.; Ying, L. & Wang, C. - J. Appl. Polym. Sci., 98, p.1708 (2005). http://dx.doi.org/10.1002/app.22343

41. Ouyang, Q.; Cheng, L.; Wang, H. & Li, K. - Polym. Degrad. Stab., 93, p.1415 (2008). http://dx.doi.org/10.1016/j. polymdegradstab.2008.05.021

42. Zhang, W. & Liu, J. - J. Wuhan Univer. Technol. - Mat. Sci. Ed., 21, p.26 (2006).

43. Han, N.; Zhang, X.-X. & Wang, X-C. - Iran. Polym. J., 19, p.243 (2010).
588371807f8c9d0a0c8b491c polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections