Biocompósitos de Acetato de Celulose e Fibras Curtas de Curauá Tratadas com CO2 Supercrítico
Biocomposites Based on Cellulose Acetate and Short Curaua Fibers Treated with Supercritical CO2
Gutiérrez, Miguel C.; Rosa, Paulo de T. V. e; De Paoli, Marco-Aurélio; Felisberti, Maria Isabel
http://dx.doi.org/10.1590/S0104-14282012005000037
Polímeros: Ciência e Tecnologia, vol.22, n3, p.295-302, 2012
Resumo
Neste trabalho foram desenvolvidos biocompósitos baseados em acetato de celulose e fibras curtas de Curauá tratadas com dióxido de carbono supercrítico. O tratamento das fibras resultou na extração parcial de lignina, sendo este um método interessante pois não resulta em rejeitos químicos. Duas séries de biocompósitos, uma delas plastificada com ftalato de dioctila (DOP) e outra com citrato de trietila (TEC), foram preparadas por extrusão. Para ambas ocorreu a fibrilação e distribuição uniforme das fibrilas. Como conseqüência, os biocompósitos apresentaram maior capacidade calorífica, menor condutividade térmica e maior coeficiente de expansão térmica em comparação ao acetato de celulose plastificado. O tratamento das fibras com CO2 supercrítico intensificou as variações destas propriedades. Dentre os plastificantes, o DOP mostrou-se ligeiramente mais eficiente, resultando em materiais com menores valores de Tg e de módulo de Young. A adição das fibras teve um impacto relativamente baixo sobre o módulo (10%), porém houve uma perda significativa da resistência ao impacto. O conjunto de resultados permite concluir que estes biocompósitos apresentam potencial de aplicação como isolantes térmicos, sendo que os plastificados com TEC apresentam como vantagem o fato de todos seus componentes serem biodegradáveis.
Palavras-chave
Biocompósitos, fibras lignocelulósicas, polímeros biodegradáveis, fluídos supercríticos, condutividade térmica
Abstract
In this work, the effect of pre- processing of short Curaua fibers with supercritical carbon dioxide on the properties of biocomposites with cellulose acetate was studied. The treatment with supercritical CO2 may result in the partial lignin extraction from the fibers. Two series of biocomposites, one plasticized with dioctyl phtalate (DOP) and another with triethyl citrate (TEC), were prepared by extrusion. Fibrilation and uniform distribution of fibers in the cellulose acetate matrix were observed for both biocomposites. As a consequence, the composites showed a higher specific heat, lower thermal conductivity and higher coefficient of thermal expansion than plasticized cellulose acetate. The treatment of the fibers increased such differences. Among the plasticizers, DOP was more efficient, decreasing Tg and Young´s modulus of plasticized cellulose acetate. The fiber addition had a relatively low impact on the modulus (10%), however caused a decrease in the impact resistance. Taken together, the results show that these biocomposites are promising as thermal insulators, with the additional advantage of biodegradability of all components in the case of biocomposites plasticized with TEC.
Keywords
Biocomposites, lignocellulosic fibers, supercritical fluids, biodegradable polymers, thermal conductivity
References
1. Mahonty, A. K.; Misra, M. & Hinrichsen, G. - Macromol. Mater.
Eng., 276-277, p.1 (2000).
2. John, M. J. & Thomas, S. - Carbohydr. Polym., 71, p.341 (2008).
3. Bledzki, A. K.; Reihmane, S. & Gassan J. - J. Appl. Polym. Sci., 59, p.1329 (1996). http://dx.doi.org/10.1002/(SICI)1097‑4628(19960222) 59:8<1329::AID-APP17>3.0.CO;2-0
4. Aluigi, A.; Vineis, C.; Ceria, A. & Tonin C. - Compos. Part A: Appl. Sci. Manufact., 39, p.126 (2008). http://dx.doi.org/10.1016/j. compositesa.2007.08.022
5. Fangueiro, R. & Mukhopadhyay, S. - J. Therm. Comp. Mater., 22, p.135 (2009). http://dx.doi.org/10.1177/0892705708091860
6. Panigrahi, S.; Li, X. & Tabil L. G. - J. Polym. Environ., 15, p.25 (2007). http://dx.doi.org/10.1007/s10924-006-0042-3
7. Kiran, E. & Balkan, H. - J. Supercritical. Fluids, 7, p.75 (1994). http:// dx.doi.org/10.1016/0896-8446(94)90043-4
8. Li, L. & Kiran, E. - Ind. Eng. Chem. Res., 27, p.1301 (1988). http:// dx.doi.org/10.1021/ie00079a035
9. Pasquine, D.; Pimenta, M. T.; Ferreira, L. H. & Curvelo, A. S. A. - J. Supercritical Fluids, 36, p.31 (2005). http://dx.doi.org/10.1016/j. supflu.2005.03.004
10. Takagi, H.; Kako, S.; Kusano, K. & Ousaka, A. - Adv. Compos. Mater., 16, p. 377 (2007). http://dx.doi.org/10.1163/156855107782325186
11. Kim, S. W.; Lee, S. H.; Kang, J. S. & Kang, K. H. - Inter. J. Thermophys., 27, p. 1873 (2006). http://dx.doi.org/10.1007/ s10765‑006-0128-0
12. Santos, P. A.; Spinacé, M. A. S.; Fermoselli, K. K. G. & De Paoli, M. A. - Polímeros, 19, p.31 (2009).
13. Taha, I. & Ziegmann, G. - J. Compos. Mater., 40, p.1933 (2006). http:// dx.doi.org/10.1177/0021998306061304
14. Ouajai, S. & Shanks, R. A. - Macromol. Mater Eng., 294, p.213 (2009). http://dx.doi.org/10.1002/mame.200800266
15. D’Almeida, J. R. M.; Aquino, R. C. M. P. & Monteiro, S. N. - Compos. Part A, Appl. Sci. Manuf., 37, p.1473 (2006).
16. Spinacé, M. A. S.; Lambert, C. S.; Fermoselli, K. K. G. & De Paoli, M. A. - Carbohydr. Polym., 77, p.47 (2009).
17. Persico, P.; Ambrogi, V.; Acierno, D. & Carfagna, C. - J. Vinyl. Addit. Technol., 15, p.139 (2009). http://dx.doi.org/10.1002/vnl.20187
18. Wong, S.; Shanks, R. A. & Hodzic A. - Polym. Eng. Sci., 43, p.1566 (2007). http://dx.doi.org/10.1002/pen.10132
19. Lopes, C. M. A.; Felisberti, M. I. – Polym. Test., 23, p. 637 (2004). http://dx.doi.org/10.1016/j.polymertesting.2004.01.013
20. Silva, R. V. & Aquino, E. M. F. - J. Reinforc. Plast. Compos., 27, p.103 (2008). http://dx.doi.org/10.1177/07316844080270010301
21. Phuong, N. T.; Solloguob, C. & Guinault, A. - J. Reinforc. Plast. Compos., 29/21, p.3244 (2010).
22. Tomczak, F.; Satyanarayana, K. G. & Sydenstricker, T. H. D. - Compos. Part A: Appl. Sci. Manufact., 38, p.2227 (2007). http://dx.doi. org/10.1016/j.compositesa.2007.06.005
23. Ouajai, S. & Shanks, R. A. - Compos. Sci. Technol., 69, p.2119 (2009). http://dx.doi.org/10.1016/j.compscitech.2009.05.005
24. Schilling, M.; Bouchard, M.; Khanjian, H.; Learner, T.; Phenix, A. & Rivenc, R. - Acc. Chem. Res., 43, p.888 (2010). PMid:20455567. http://dx.doi.org/10.1021/ar1000132
25. Chatterjee, P. K. & Conrad, C. M. - J. Polym. Sci.: Part A-1, 6, p.3217 (1968).
26. Videki, B.; Klebert, S. & Pokanzsky, B. - J. Polym. Sci.: Part B, 45, p.873 (2007). http://dx.doi.org/10.1002/polb.21121
27. Sommer, W. - “Plastic additives Handbook”, cap.5, 2nd ed., Hanser Publishers, Munich (1987).
28. Cassu, S. N. & Felisberti, M. I. - Quim. Nova, 28, p.255 (2005). http:// dx.doi.org/10.1590/S0100-40422005000200017
29. Alexander, S.; Entin-Wolhman, O. & Orbach, R. - Phys. Rev. Part: B, 34, p.2726 (1986). http://dx.doi.org/10.1103/PhysRevB.34.2726
30. Dashora, P. & Gupta, G. - Polymer., 37, p.231 (1996). http://dx.doi. org/10.1016/0032-3861(96)81092-5
31. Mahonty, A. K.; Wibowo, A.; Misra, M. & Drzal L. T. - Polym. Sci. & Eng., 43, p.1151 (2003).
32. Le Baillif, M. & Oskman, K. - J. Therm. Comp. Mater., 22, p.115 (2009). http://dx.doi.org/10.1177/0892705708091608
2. John, M. J. & Thomas, S. - Carbohydr. Polym., 71, p.341 (2008).
3. Bledzki, A. K.; Reihmane, S. & Gassan J. - J. Appl. Polym. Sci., 59, p.1329 (1996). http://dx.doi.org/10.1002/(SICI)1097‑4628(19960222) 59:8<1329::AID-APP17>3.0.CO;2-0
4. Aluigi, A.; Vineis, C.; Ceria, A. & Tonin C. - Compos. Part A: Appl. Sci. Manufact., 39, p.126 (2008). http://dx.doi.org/10.1016/j. compositesa.2007.08.022
5. Fangueiro, R. & Mukhopadhyay, S. - J. Therm. Comp. Mater., 22, p.135 (2009). http://dx.doi.org/10.1177/0892705708091860
6. Panigrahi, S.; Li, X. & Tabil L. G. - J. Polym. Environ., 15, p.25 (2007). http://dx.doi.org/10.1007/s10924-006-0042-3
7. Kiran, E. & Balkan, H. - J. Supercritical. Fluids, 7, p.75 (1994). http:// dx.doi.org/10.1016/0896-8446(94)90043-4
8. Li, L. & Kiran, E. - Ind. Eng. Chem. Res., 27, p.1301 (1988). http:// dx.doi.org/10.1021/ie00079a035
9. Pasquine, D.; Pimenta, M. T.; Ferreira, L. H. & Curvelo, A. S. A. - J. Supercritical Fluids, 36, p.31 (2005). http://dx.doi.org/10.1016/j. supflu.2005.03.004
10. Takagi, H.; Kako, S.; Kusano, K. & Ousaka, A. - Adv. Compos. Mater., 16, p. 377 (2007). http://dx.doi.org/10.1163/156855107782325186
11. Kim, S. W.; Lee, S. H.; Kang, J. S. & Kang, K. H. - Inter. J. Thermophys., 27, p. 1873 (2006). http://dx.doi.org/10.1007/ s10765‑006-0128-0
12. Santos, P. A.; Spinacé, M. A. S.; Fermoselli, K. K. G. & De Paoli, M. A. - Polímeros, 19, p.31 (2009).
13. Taha, I. & Ziegmann, G. - J. Compos. Mater., 40, p.1933 (2006). http:// dx.doi.org/10.1177/0021998306061304
14. Ouajai, S. & Shanks, R. A. - Macromol. Mater Eng., 294, p.213 (2009). http://dx.doi.org/10.1002/mame.200800266
15. D’Almeida, J. R. M.; Aquino, R. C. M. P. & Monteiro, S. N. - Compos. Part A, Appl. Sci. Manuf., 37, p.1473 (2006).
16. Spinacé, M. A. S.; Lambert, C. S.; Fermoselli, K. K. G. & De Paoli, M. A. - Carbohydr. Polym., 77, p.47 (2009).
17. Persico, P.; Ambrogi, V.; Acierno, D. & Carfagna, C. - J. Vinyl. Addit. Technol., 15, p.139 (2009). http://dx.doi.org/10.1002/vnl.20187
18. Wong, S.; Shanks, R. A. & Hodzic A. - Polym. Eng. Sci., 43, p.1566 (2007). http://dx.doi.org/10.1002/pen.10132
19. Lopes, C. M. A.; Felisberti, M. I. – Polym. Test., 23, p. 637 (2004). http://dx.doi.org/10.1016/j.polymertesting.2004.01.013
20. Silva, R. V. & Aquino, E. M. F. - J. Reinforc. Plast. Compos., 27, p.103 (2008). http://dx.doi.org/10.1177/07316844080270010301
21. Phuong, N. T.; Solloguob, C. & Guinault, A. - J. Reinforc. Plast. Compos., 29/21, p.3244 (2010).
22. Tomczak, F.; Satyanarayana, K. G. & Sydenstricker, T. H. D. - Compos. Part A: Appl. Sci. Manufact., 38, p.2227 (2007). http://dx.doi. org/10.1016/j.compositesa.2007.06.005
23. Ouajai, S. & Shanks, R. A. - Compos. Sci. Technol., 69, p.2119 (2009). http://dx.doi.org/10.1016/j.compscitech.2009.05.005
24. Schilling, M.; Bouchard, M.; Khanjian, H.; Learner, T.; Phenix, A. & Rivenc, R. - Acc. Chem. Res., 43, p.888 (2010). PMid:20455567. http://dx.doi.org/10.1021/ar1000132
25. Chatterjee, P. K. & Conrad, C. M. - J. Polym. Sci.: Part A-1, 6, p.3217 (1968).
26. Videki, B.; Klebert, S. & Pokanzsky, B. - J. Polym. Sci.: Part B, 45, p.873 (2007). http://dx.doi.org/10.1002/polb.21121
27. Sommer, W. - “Plastic additives Handbook”, cap.5, 2nd ed., Hanser Publishers, Munich (1987).
28. Cassu, S. N. & Felisberti, M. I. - Quim. Nova, 28, p.255 (2005). http:// dx.doi.org/10.1590/S0100-40422005000200017
29. Alexander, S.; Entin-Wolhman, O. & Orbach, R. - Phys. Rev. Part: B, 34, p.2726 (1986). http://dx.doi.org/10.1103/PhysRevB.34.2726
30. Dashora, P. & Gupta, G. - Polymer., 37, p.231 (1996). http://dx.doi. org/10.1016/0032-3861(96)81092-5
31. Mahonty, A. K.; Wibowo, A.; Misra, M. & Drzal L. T. - Polym. Sci. & Eng., 43, p.1151 (2003).
32. Le Baillif, M. & Oskman, K. - J. Therm. Comp. Mater., 22, p.115 (2009). http://dx.doi.org/10.1177/0892705708091608