Otimização de Propriedades Mecânicas de Misturas Ternárias de Polipropileno (PP)/Borracha de Etileno-Propileno-Dieno (EPDM)/Pó de Pneus (SRT) sob Tração e Impacto usando a Metodologia da Superfície de Resposta (MSR)
Optimization of Mechanical Properties of Polypropylene (PP)/Ethylene-Propylene-Diene Monomer Rubber (EPDM)/Scrap Rubber Tire (SRT) Ternary Mixtures Under Tensile and Impact using the Response Surface Methodology (RSM)
Sirqueira, Alex da Silva; Silva, Wilson S. da; Ramos, Valéria D.; Costa, Helson M. da
http://dx.doi.org/10.1590/S0104-14282012005000009
Polímeros: Ciência e Tecnologia, vol.22, n1, p.27-33, 2012
Resumo
A metodologia da superfície de resposta (MSR) é uma coleção de técnicas estatísticas e matemáticas para desenvolver, melhorar e otimizar processos. Neste estudo, a técnica MSR foi aplicada na investigação do comportamento mecânico de diferentes misturas ternárias de PP/EPDM/SRT. Após a mistura apropriada em uma extrusora de dupla rosca co-rotante e a moldagem por injeção, as propriedades mecânicas (resistência à tração e a resistência ao impacto) foram determinadas e usadas como variáveis de resposta. A microscopia eletrônica de varredura (MEV) foi usada para investigar a morfologia das diferentes misturas e interpretar os resultados. Com ferramentas estatísticas específicas, um número mínimo de experimentos permitiu o desenvolvimento de um modelo de superfície de resposta e a otimização das concentrações dos componentes de acordo com o desempenho mecânico. Valores elevados de resistência ao impacto são alcançados (>80 J.m–1) quando, de acordo com as condições experimentais estudadas, a mistura física de PP/EPDM/SRT mantém as proporções de EPDM e SRT em torno de 25%.
Palavras-chave
MSR, PP, EPDM, pó de pneu
Abstract
The response surface methodology (RSM) is a collection of statistical and mathematical techniques for developing, improving and optimizing processes. In this study, RSM technique was applied to the investigation of the mechanical behavior of different PP/EPDM/ SRT ternary mixtures. After appropriate processing in a co-rotating twin extruder and injection molding, the mechanical properties, such as tensile strength and impact strength, were determined and used as response variables. Scanning electron microscopy (SEM) was used for investigating the morphology of the different blends and to interpret the results. With specific statistical tools, a minimum number of experiments allowed the response surface model to be developed and the concentrations of the components to be optimized according to the mechanical performance. High values of impact strength were reached (>80 J.m–1) when the PP/EPDM/SRT mixture had a EPDM/ SRT ratio of around 25%.
Keywords
RSM, PP, EPDM, scrap rubber tire
References
1. Xanthos, M. – Polym. Eng. Sci., 28, p.1392 (1988). http://dx.doi. org/10.1002/pen.760282108
2. Utracki, L. A. – “Commercial Polymer Blends”, Chapman and Hall, London (1998). http://dx.doi.org/10.1007/978-1-4615-5789-0
3. Jaziri, M.; Mnif, N.; Nageotte, V. M. & Camby, H. P. – Polym. Eng. Sci., 47, p.1009 (2007). http://dx.doi.org/10.1002/pen.20758
4. Stehling, F. C.; Huff, T.; Speed, C. S. & Wissler, G. – J. Appl. Polym. Sci., 26, p.2693 (1981). http://dx.doi.org/10.1002/app.1981.070260818
5. Galli, P.; Danesi, S. & Simonazzi, T. – Polym. Eng. Sci., 24, p.544 (1984). http://dx.doi.org/10.1002/pen.760240807
6. Tjong, S. C.; Li, W. D. & Li, R. K. Y. – Eur. Polym. J., 34, p.755 (1998). http://dx.doi.org/10.1016/S0014-3057(97)00182-1
7. Yang, H.; Li, B.; Wang, K.; Xie, B.; Yiang, M. & Hou, M. - Eur. Polym. J., 44, p.113 (2008). http://dx.doi.org/10.1016/j.eurpolymj.2007.10.028
8. Tang, X. G.; Bao, R. Y.; Yang, W.; Xie, B.; Yiang, M. & Hou, M. - Eur. Polym. J., 45, p.1448 (2009). http://dx.doi.org/10.1016/j.eurpolymj.2009.02.004
9. Yeh, J. T. & Lin, S. C. – J. Appl. Polym. Sci., 114, p.2806 (2009). http:// dx.doi.org/10.1002/app.30865
10. Phadke, A. & De, S. K. – Polym. Eng. Sci., 26, p.1079 (1986). http://dx.doi. org/10.1002/pen.760261508
11. Tantayanon, S. & Juikham, S. – J. Appl. Polym. Sci., 91, p.510 (2004). http://dx.doi.org/10.1002/app.13182
12. Lee, S. H.; Belasubramanian, M. & Kim. J. K. – J. Appl. Polym. Sci., 106, p.3193 (2007). http://dx.doi.org/10.1002/app.26489
13. Ishak, Z. A. M. & Bakar, A. A. – Eur. Polym. J., 31, p.259 (1995). http:// dx.doi.org/10.1016/0014-3057(94)00156-1
14. Plawky, U.; Schlabs, M. & Wening, W. – J. Appl. Polym. Sci., 59, p.1891 (1996). http://dx.doi.org/10.1002/(SICI)1097- 4628(19960321)59:12%3C1891::AID-APP11%3E3.0.CO;2-V
15. Fayte, R.; Jerome, R. & Teyssié, P. H. – Polym. Eng. Sci., 27(5), p.328 (1987).
16. Horák, Z.; Fort, F.; Hlavatá, D.; Lednický, F. & Vecerka, V. – Polymer, 37, p.65 (1996).
17. Ismail, H.; Nasaruddin, M. N. & Rozman, H. D. – Eur. Polym. J., 35, p.1429 (1999). http://dx.doi.org/10.1016/S0014-3057(98)00223-7
18. Siriwardena, S.; Ismail, H.; Ishiaku, U. S. & Perera, M. C. S. – J. Appl. Polym. Sci., 85, p.438 (2002). http://dx.doi.org/10.1002/app.10713
19. Da Costa, H. M.; Ramos, V. D. & Rocha, M. C. G. – Polym. Test., 25, p.498 (2006).
20. Da Costa, H. M.; Ramos, V. D.; Da Silva, W. S. & Sirqueira, A. S. - Polym. Test., 29, p.572 (2010). http://dx.doi.org/10.1016/j. polymertesting.2010.04.003
21. Oliphant, K. & Baker, W. E. – Polym. Eng. Sci., 33, p.166 (1993). http:// dx.doi.org/10.1002/pen.760330307
22. Phinyocheep, P.; Axtell, F. H. & Laosee, T. – J. Appl. Polym. Sci., 86, p.148 (2002). http://dx.doi.org/10.1002/app.10917
23. Kager-Kocsis, J.; Kalló, A. & Kuleznev, V. N. – Polymer, 25, p.279 (1984).
24. Zhang, B. Z.; Uhlmann, D. R. & Vander, J. B. – J. Appl. Polym. Sci., 30, p.2485 (1985). http://dx.doi.org/10.1002/app.1985.070300617
25. Da Costa, H. M. & Ramos, V. D. – Polym. Test., 27, p.27 (2008). http:// dx.doi.org/10.1016/j.polymertesting.2007.08.001
26. Setz, S.; Stricker, F.; Kressier, J.; Duschek, T. & Mulhaupt, R. – J. Appl. Polym. Sci., 59, p.1117 (1996). http://dx.doi.org/10.1002/(SICI)1097- 4628(19960214)59:7%3C1117::AID-APP8%3E3.0.CO;2-H