Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/S0104-14282011005000008
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Cytocompatibility of Chitosan and Collagen-Chitosan Scaffolds for Tissue Engineering

Fernandes, Ligia L.; Resende, Cristiane X.; Tavares, Débora S.; Soares, Gloria A.; Castro, Letícia O.; Granjeiro, Jose M.

Downloads: 1
Views: 1242

Abstract

In this work, chitosan and collagen-chitosan porous scaffolds were produced by the freeze drying method and characterized as potential skin substitutes. Their beneficial effects on soft tissues justify the choice of both collagen and chitosan. Samples were characterized using scanning electron microscope, Fourier Transform InfraRed Spectroscopy (FTIR) and thermogravimetry (TG). The in vitro cytocompatibility of chitosan and collagen-chitosan scaffolds was evaluated with three different assays. Phenol and titanium powder were used as positive and negative controls, respectively. Scanning electron microscopy revealed the highly interconnected porous structure of the scaffolds. The addition of collagen to chitosan increased both pore diameter and porosity of the scaffolds. Results of FTIR and TG analysis indicate that the two polymers interact yielding a miscible blend with intermediate thermal degradation properties. The reduction of XTT ((2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) and the uptake of Neutral Red (NR) were not affected by the blend or by the chitosan scaffold extracts, but the blend and the titanium powder presented greater incorporation of Crystal Violet (CV) than phenol and chitosan alone. In conclusion, collagen-chitosan scaffolds produced by freeze-drying methods were cytocompatible and presented mixed properties of each component with intermediate thermal degradation properties.

Keywords

Collagen, chitosan, blend, cytotoxicity

References

1. Ma, L.; Gao, C.; Mao, Z.; Zhou, J.; Shen, J.; Hu, X. & Han, C. - Biomaterials, 24, p.4833 (2003).

2. Ding, C-M.; Zhou, Y.; He, Y-N. & Tan, W-S. - Process Biochem., 43, p.287 (2008).

3. Wang, X. H.; Cui, F. Z. & Feng, Q. L. – J. Bioact. Compat. Polym., 18, p.453 (2004).

4. You, Y.; Park, W. H.; Ko, B. M. & Min, B. M. - J. Mater. Sci.: Mater. Med., 15, p.297 (2004).

5. Tan, W.; Krishnaraj, R. & Desai, T. A. - Tissue Eng., 7, p.203 (2001).

6. Zhu, Y.; Liu, T.; Song, K.; Jiang, B.; Ma, X. & Cui, Z. – J. Mater. Sci: Mater. Med., 20, p.799 (2009).

7. Wang, W.; Lin, S.; Xiao, Y.; Huang, Y.; Tan, Y.; Cai, L. & Li, X. - Life Sci., 82, p.190 (2008).

8. Arpornmaeklong, P.; Suwatwirote, N.; Pripatnanont, P. & Oungbho, K. - Int. J. Oral Maxillofac. Surg., 36, p.328 (2007).

9. Peng, L.; Cheng, X. R.; Wang, J. W.; Xu, D. X. & Wang, G. – J. Bioact. Compat. Polym., 21, p.207 (2006).

10. Wang, X. H.; Li, D. P.; Wang, W. J.; Feng, Q. L.; Cui, F. Z.; Xu, Y. X.; Song, X. H. & van der Werf, M. - Biomaterials, 24, p.3213 (2003).

11. Wang, X.H.; Cui, F.Z. & Feng, Q.L. - J Bioact. Compat. Polym., 18, p.453 (2004).

12. Patel, M.; Vandevord, P. J.; Matthew, H. W.; De Silva, S.; Wu, B. & Wooley, P. H. – J. Biomater. Appl., 23, p.101 (2008).

13. O’Brien, F. J.; Harley, B. A.; Yannas, I. V. & Gibson, L. J. - Biomaterials, 26, p.433(2005).

14. International Organization for Standardization. - “ISO - 10993-5. Biological evaluation of medical devices. Part 5: Tests for cytotoxicity: In vitro methods”, International Organization for Standardization, Geneva (1999).

15. International Organization for Standardization. - "ISO 10993- 12. Biological evaluation of medical devices. Part 12: Sample preparation and reference materials", International Organization for Standardization, Geneva (1996)

12. Biological evaluation of medical devices. Part 12: Sample preparation and reference materials”, International Organization for Standardization, Geneva (1996).

16. Scudiero, D. A.; Shoemaker, R. H.; Paul, K. D.; Monks, A.; Tierney, S.; Nofziger, T. H.; Currens, M. J.; Seniff, D. & Boyd, M. R. - Cancer Res., 48, p.4827 (1988).

17. Winckler, J. - Prog. Histochem. Cytochem., 6, p.1 (1974).

18. Kueng, W.; Silber, E. & Eppenberger, U. - Anal Biochem., 182, p.16 (1989).

19. Sionkowska, A.; Wisniewski, M.; Skopinska, J.; Kennedy, C. J. & Wess, T. J. - Biomaterials, 25, p.795 (2004).

20. Chen, Z.; Mo, X.; He, C. & Wang, H. - Carbohyd. Polym., 72, p.410 (2008).

21. Tohni, E. & Plepis, A. M. G. – Quim. Nova, 25, p.943 (2002).

22. Horn, M. M.; Martins, V. C. A. & Plepis, A. M. G. - Carbohyd. Polym., 77, p.239 (2009).

23. Ishiyama, M.; Tominaga, H.; Shiga, M.; Sasamoto, K.; Okhura, Y. & Ueno, K. - Biol. Pharm. Bull., 19, p.1518 (1996).

24. Takamori, E. R.; Figueira, E. A.; Taga, R.; Sogayar, M. C. & Granjeiro, J. M. – Braz. Dent. J., 18, p.179 (2007).

25. DeDeus, G.; Canabarro, A.; Alves, G.; Linhares, A.; Senne, M. I. & Granjeiro, J. M. – J. Endod., 35, p.1387 (2009).
588371657f8c9d0a0c8b48a2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections