Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Chemical Deacetylation Natural Xanthan (Jungbunzlauer)

Pinto, Ellen P.; Furlan, Lígia; Vendruscolo, Claire T.

Downloads: 0
Views: 420


With the aim of adapting a method for removal of acetyl groups from xanthan, reactions of chemical deacetylation were carried out with natural xanthan (Jungbunzlauer®) with variations on the following parameters: biopolymer and alkali concentration (sodium and potassium hydroxide). The deacetylation reaction was performed at 25 °C for three hours. The proposed methodology was efficient to promote the deacetylation reaction. The viscosity of xanthan increased when the alkali concentration was higher in the deacetylation reaction. Xanthan concentration in the solution used in the deacetylation reaction did not influence the solutions viscosity, as similar results in both tested biopolymer concentrations (0.5 and 1%) were obtained for all experiments in different shear rates. Deacetylation reactions at 25 °C for three hours with sodium and potassium hydroxide in 0.01 mol.L–1 showed a viscosity of 410 and 420 mPa.s at 10 s–1 and acetylation degree 1.3 e 1.4%, respectively.


Natural xanthan, deacetylation, reaction parameters


1. Sutherland, I. W. Structure-function relationships in microbial exopolysaccharides. Biotechnol. Adv., 12, p.393 (1994).

2. Jansson, P. E.; Keene, L. & Lindberg, B. Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydr. Res., 45, p.275 (1975).

3. Melton, L. D.; Mindt, L.; Rees, D. A. & Sanderson, G. R. Covalent structure of extracellular polysaccharide from Xanthomonas campestris. Carbohydr. Res, 46, p.245 (1976).

4. Stankowski, J. D.; Mueller, B. E. & Zeller, S. G. Location of second O-acetyl group in xanthan gum by the reductive-cleavage method. Carbohydr. Res., 241, p.321 (1993).

5. Cadmus, M. C.; Rogovin, S. P.; Burton, K. A.; Pittsley, J. E.; Knutson, C. A. & Jeanes, A. Colonial variation in Xanthomonas campestris NRRL B-1459 and characterization of the polysaccharide from variant strain. Can. J. Microbiol., 22, p.942 (1976).

6. Sutherland, I. W. & Tait, M. I. Biopolymers. Encyclopedia of Microbiology, 1, p.339 (1992).

7. Sutherland, I. W. Microbial polysaccharides from gram-negative bacteria. Int. Dairy J., 11, p.663 (2001).

8. Rinaudo, M. Role of substituents on the properties of some polysaccharides. Biomacromolecules, 5, p.1155 (2004).

9. Harding, N. E.; Cleary, J. M. & Ielpi, L. Genetics and biochemistry of xanthan gum production by Xanthomonas campestris. in: Hui, Y. H.; Khachatourians, G. G. Food Biotechnol. Microorganisms. VCH, p. 495-514 (1994).

10. Sloneker, J. H. & Jeanes, A. Exocellular bacterial polysaccharide from Xanthomonas campestris NRRL B-1459. Can. J. Chem., 40, p.2066 (1962).

11. Sandford, P. A.; Pittsley, J. E.; Knutson, C. A.; Watson, P. R.; Cadmus, M. C. & Jeane, A. Variation in Xanthomonas campestris NRRL B-1459: characterization of xanthan products of differing strains. in: Sandford, P. A.; Laskins, A. Extracellular Microbial Polysaccharides. (p.192-210). Washington, D. C.: American Chemical Society (1977).

12. Smith, I. H.; Symes, K. C. & Lawson, C. J. Influence of the pyruvate content of xanthan on macromolecular association in solution. Int. J. Biol. Macromol., 3, p.129 (1981).

13. Cheetham, N. W. H. & Norma, N. M. N. The effect of pyruvate on viscosity properties of xanthan. Carbohydr. Polym., 10, p.55 (1989).

14. Tako, M. & Nakamura, S. Rheological properties of deacetylated xanthan in aqueous media. Agr. Biol. Chem., 48, p.2887 (1984).

15. Bradshaw, I. J.; Nisbet, B. A.; Kerr, M. H. & Sutherland, I. W. Modified xanthan – its preparation and viscosity. Carbohydr. Polym., 3, p.23 (1983).

16. Callet, F.; Milas, M. & Rinaudo, M. Influence of acetyl and pyruvate contents on rheological properties of xanthan in dilute solution. Int. J. Biol. Macromol., 9, p.291 (1987).

17. Shatwell, K. P.; Sutherland, I. W.; Dea, I. C. M. & Ross-Murphy, S. B. The influence of acetyl and pyruvate substituents on the helix-coil transition behaviour of xanthan. Carbohydr. Res., 206, p.87 (1990).

18. Covielo, T.; Kajiwara, K.; Burchard, W.; Dentini, M. & Crescenzi V. Solution properties of xanthan. 1. Dynamic and static light scattering from native and modifiend xanthans in dilute solutions. Macromol.s, 19, p.2826 (1986).

19. Dentini, M.; Crescenzi, V. & Blasi, D. Conformational properties of xanthan derivatives in dilute aqueous solution. Int. J. Biol. Macromol., 6, p.03 (1984).

20. Tako, M. & Nakamura, S. Evidence for intramolecular associations in xanthan molecules in aqueous media. Agr. Biol. Chem., 53, p. 1941 (1989).

21. Tako, M. Synergistic interaction between deacylated xanthan and galactomannan. J. Carbohydr. Chem., 10, p.619 (1991).

22. Khouryieh, H. A.; Herald, T. J.; Aramouni, F.; Bean, S. & Alvi, S. Influence of deacetylation on the rheological properties of xanthan- guar interactions in dilute aqueous solutions. J. Food Science, 72, p.173 (2007).

23. Aoac. Association of Official Analytical Chemists. Official methods of analysis of AOAC international. 14th ed. Washington (1987).

24. Astm D1428-64. Annual Book of ASTM Standards, American Society for Testing and Materials. Philadelphia (1981)

25. Xuewu, Z.; Xin, L.; Dexiang, G.; Wei, Z.; Tong, X. & Yonghong, M. Rheological models for xanthan gum. J. Food Engineering, 27, p.203 (1996).

26. Mccomb, E. A. & Mccready, R. M. Determination of acetyl in pectin and in acetylated carbohydrate polymers. Anal. Chem., 29, p.819 (1957).

27. Jeanes, A.; Pittsley, J. E. & Senti, F. R. Polysaccharide B-1459: a new hydrocolloid polyelectrolyte produced from glucose by bacterial fermentation. J. Appl. Polym., 5, p.519 (1961).

28. Morris, E. R. Rheology of xanthan: suspension of particles and stabilization of emulsions. Food & Ingredients Journal of Japan, 167, p.31 (1996).

29. Navarro, R. F. “Fundamentos de reologia de polímeros”. Caxias do Sul: EDUCS, p 256. (1997).

30. Whitcomb, P. J. Rheology of xanthan gum. J. Rheol., 22, p.493 (1978).

31. Borges, C. D. Caracterização da goma xantana em função da cepa de Xanthomonas campestris pv pruni e das condições operacionais. 49f. Dissertação (Mestrado em Ciência e Tecnologia Agroindustrial) – Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas (2004).

32. Holzwarth, G. & Ogletree, J. Pyruvate-free xanthan. Carbohydr. Res., 76, p.277 (1979).

33. Shatwell, K. P. & Sutherland, I. W. Influence of the acetyl substituent on the interaction of xanthan with plant polysaccharides – I. Xanthan – Locust bean gum systems. Carbohydr. Polym., 14, p.29 (1991).

34. Smith, B. C. Infrared Spectral Interpretation: A systematic approach. Boca Raton: CRC Press, p 2463 (1998).
588371677f8c9d0a0c8b48aa polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections