Analysis of Automotive Liftgate Seals Using Finite Element Analysis
Ueda, Rafael H. T.; Brandão, Lincoln C.; Lauro, Carlos H.
http://dx.doi.org/10.1590/S0104-14282010005000052
Polímeros: Ciência e Tecnologia, vol.20, n4, p.301-308, 2010
Abstract
Seals have wide application in automotive products. They are responsible for sealing the car in several parts such as the doors, the air intake cowl seal, and air intake lights seal. Strain and stress studies are very important in order to understand the behavior of polymeric materials, which are generally submitted to great workload variation and environmental influence. This study of EPDM rubber was carried out to define the strain, stress and yield stress. Tensile and compression tests were carried out on workpieces with 100 mm of length. The data were acquired using the Qmat software. A Finite Element Analysis using the MSC Marc Mentat™ was conducted and compared with experimental tests. The results showed an increase of effort proportional to bulb thickness. The proportional increase of compression effort for different displacements was significant. Moreover, physical parameters such as length, thickness, and friction coefficient changed the strain and stress rate.
Keywords
Door seals, EPDM rubber, finite element analysis, stress, polymer science
References
1. Bedard, L. – “Caractérisation dynamique des joints automobiles”,
Master Degree Thesis, Université du Québec à Trois-Rivières, Canada
(2008).
2. Bouchart, V.; Bhatnagar, N.; Brieu, M.; Ghosh, A. K. & Kondo, D. - Comptes Rendus. Mecanique., 336, p.714 (2008).
3. Cooper Standard Automotive – “Body and Chassis – products and innovations”, (2009). Disponível em:. Acesso em: 4 abr. 2009.
4. Felhõs, D.; Xu, D.; Schlarb, A. K.; Váradi, K. & Goda, T. - eXPRESS Polym. Lett., 2, p.157 (2008).
5. Fukumori, K.; Matsushita, M.; Okamoto, H.; Sato, N.; Suzuki, Y. & Takeuchi, K. - JSAE Rev., 23, p.259 (2002).
6. Ha, Y. S.; Cho, J. R.; Kim, T. H. & Kim, J. H. - J. Mater. Process. Technol., 201, p.168 (2008).
7. Jange, B. Z.; Ulman, D. R. & Vander Sande, J. B. - J. Appl. Polym. Sci., 30, p.24 (1985).
8. Karger-Kocsis, J. & Friedrich, K. - J. Mater. Sci, 22, p.947 (1987).
9. Shu-Lin, B.; G’Sellb C.; Hiverc J. M. & Mathieuc, C. - Polymer, 45, p.3063 (2004).
10. Wagner, D. A.; Morman Jr., K. N.; Gur, Y. & Koka, M. R., - Finite Elements in Analysis and Design, 28, p.33 (1997).
11. Xiao, H-W.; Shi-Qiang, H. & Jiang, T. - J. Appl. Polym. Sci, 92, p.357 (2004).
12. Zebarjad, S. M.; Bagheri, R.; Lazzeri, A. & Serajzadeh, S. - Mater. Des., 25, p.247 (2004).
2. Bouchart, V.; Bhatnagar, N.; Brieu, M.; Ghosh, A. K. & Kondo, D. - Comptes Rendus. Mecanique., 336, p.714 (2008).
3. Cooper Standard Automotive – “Body and Chassis – products and innovations”, (2009). Disponível em:
4. Felhõs, D.; Xu, D.; Schlarb, A. K.; Váradi, K. & Goda, T. - eXPRESS Polym. Lett., 2, p.157 (2008).
5. Fukumori, K.; Matsushita, M.; Okamoto, H.; Sato, N.; Suzuki, Y. & Takeuchi, K. - JSAE Rev., 23, p.259 (2002).
6. Ha, Y. S.; Cho, J. R.; Kim, T. H. & Kim, J. H. - J. Mater. Process. Technol., 201, p.168 (2008).
7. Jange, B. Z.; Ulman, D. R. & Vander Sande, J. B. - J. Appl. Polym. Sci., 30, p.24 (1985).
8. Karger-Kocsis, J. & Friedrich, K. - J. Mater. Sci, 22, p.947 (1987).
9. Shu-Lin, B.; G’Sellb C.; Hiverc J. M. & Mathieuc, C. - Polymer, 45, p.3063 (2004).
10. Wagner, D. A.; Morman Jr., K. N.; Gur, Y. & Koka, M. R., - Finite Elements in Analysis and Design, 28, p.33 (1997).
11. Xiao, H-W.; Shi-Qiang, H. & Jiang, T. - J. Appl. Polym. Sci, 92, p.357 (2004).
12. Zebarjad, S. M.; Bagheri, R.; Lazzeri, A. & Serajzadeh, S. - Mater. Des., 25, p.247 (2004).