Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/S0104-14282010005000050
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Factorial Design to Quantify the Influence of Extrusion Parameters in the Mean Residence Time

Melo, Tomás J. A. de; Pinheiro, Luís A.; Canevarolo, Sebastião V.

Downloads: 0
Views: 927

Abstract

Residence time distribution (RTD) is a very important parameter in extrusion, either for simple polymer processing or for special processes like compounding, blending, reactive compatibilization, and controlled degradation. This work deals with the values of mean residence time (tn) as a function of the number of 45 degrees kneading elements in the screw profile, screw speed, and feeding rate. The tn values were calculated from the RTD curves, which in turn were determined by the technique of a marker added as a pulse in the steady state polymer flow. The values of tn were empirically modeled as a function of those parameters. The results showed that feeding rate is the most influent parameter, followed by number of kneading elements and screw speed. The modeling has given a quadratic function relating tn and the operational parameters tested.

Keywords

Extrusion, residence time distribution, feeding rate, screw profile, factorial design

References

1. Utracki, L. A. - Polym. Eng. Sci, 35, p.2 (1992).

2. Rauwendaal, C. - “Polymer extrusion”, Hanser, New York (1986).

3. Lawal, A. & Kalyon, D. M. - Polym. Eng. Sci., 35, p.1325 (1995).

4. Dreiblat, A. & Eise, K. “Intermeshing corotating twin-screw extruders”, in: Mixing in polymer processing, p.241, Rauwendaal, C. (ed.), Marcel Dekker, New York, (1991).

5. White, J. L. - “Twin screw extrusion: technology and principles”, Hanser, New York (1990).

6. Levenspiel, O. – “Engenharia das reações químicas”, Edgard Blücher, São Paulo (2000).

7. Todd, D. B. – Polym. Eng. Sci., 15, p.437 (1975).

8. Mélo, T. J. A. & Canevarolo, S. V. – Polímeros, 12, p.255 (2002).

9. Calumby, R. B. R. & Canevarolo, S.V. – Intern. Polym. Proces., 17, p.183 (2002).

10. Babetto, A. C. & Canevarolo, S. V. Polímeros, 10, p.90 (2000).

11. Pinheiro, L. A.; Chinelatto, M. A. & Canevarolo, S. V. – Polym. Degrad. Stab., 86, p.445 (2004).

12. Cáceres, C. A. & Canevarolo, S. V. – Polym. Degrad. Stab., 86, p.437 (2004).

13. Cáceres, C. A. & Cavevarolo, S. V. – Polímeros, 18, p.348 (2008).

14. Mélo, T. J. A. & Canevarolo, S. V. – Polym. Eng. Sci., 45, p.11 (2005).

15. Pinheiro, L. A.; Hu, G.-H.; Pessan, L. A. & Canevarolo, S. V. – Polym. Eng. Sci., 48, p.806 (2008).

16. Pinheiro, L. A.; Bitencourt, C. S.; Pessan, L. A. & Canevarolo, S. V. – Macromol. Symp., 245, p.347 (2006).

17. Canevarolo, S. V.; Bertolino, M. K.; Pinheiro, L. A.; Palermo, V. & Piccarolo, S. – Macromol. Symp., 279, p.191 (2009).

18. Coates, P. D.; Barnes, S. E.; Sibley, M. G.; Brown, E. C.; Edwards, H. G. M. & Scowen, I. J. – Polymer, 44, p.5937 (2003).

19. Hu, G.-H. & Kadri, I. – Polym. Eng. Sci., 39, p. 930 (1999).

20. Hornsby, P. R.; Tung, J. F. & Taverdi, K. – J. Appl. Polym. Sci., 53, p.891 (1994).

21. Gendron, R.; Daigneaut, L. E.; Tatibouet, J. & Dumoulin, M. - Adv. Polym. Tech., 15, p. 111 (1996).

22. Mélo, T. J. A. & Canevarolo, S. V. – Polym. Eng. Sci., 42, p.170 (2000).

23. Canevarolo, S. V. & Santos, D. M. – Polímeros, 9, p. 60 (1999).

24. Nachtigall, S. M. B.; Neto, R. B. & Mauler, R. S. – Polym. Eng. Sci., 39, p.630 (1999).
588371627f8c9d0a0c8b4893 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections