Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/S0104-14282009000100006
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Nanocompósitos de PVC com Argila Organicamente Modificada: Efeitos do Processamento e do Método de Incorporação da Argila

PVC/Organically Modified Montmorillonite Nanocomposites: Effects of Processing and Clay Incorporation Methodology

Mei, Lucia H. I.; Rodolfo Junior, Antonio

Downloads: 0
Views: 1268

Resumo

Nanocompósitos de poli(cloreto de vinila) (PVC) flexível com argila organicamente modificada (O-MMT) foram preparados utilizando-se diferentes metodologias de produção, de forma a estudar seus efeitos sobre o grau de intercalação/esfoliação da argila. A morfologia dos nanocompósitos obtidos foi avaliada através de difratometria de raios X (DRX) e microscopia eletrônica de transmissão (MET). Foram também avaliadas propriedades de tração e estabilidade térmica estática das formulações preparadas. Nanocompósitos de microestrutura híbrida intercalada/parcialmente esfoliada foram obtidos, independentemente do composto de PVC ter sido processado a partir do pó ou granulado (extrudado previamente), e do método de incorporação da O-MMT à resina de PVC (diretamente no misturador intensivo ou pré-esfoliada em DIDP/OSE a quente). Os plastificantes, presentes na formulação do composto de PVC flexível, exerceram um papel importante no processo de intercalação e esfoliação da argila, facilitando a formação dos nanocompósitos.

Palavras-chave

PVC, poli(cloreto de vinila), nanocompósito polímero-argila

Abstract

Nanocomposites of poly(vinyl chloride) (PVC) and an organically modified montmorillonite (O-MMT) were prepared using different production approaches to assess possible effects on the degree of clay intercalation/exfoliation. The morphology of the nanocomposites was studied using X ray diffratometry and transmission electron microscopy. Tensile properties and static thermal stability were also evaluated. Hybrid intercalated/partially exfoliated nanocomposites were obtained, regardless of whether the PVC compound was processed from the powder (dry blend) or granulated (extruded) samples, or of the methodology used for incorporation of O-MMT into the PVC compound (directly in the intensive mixer or pre-exfoliated in a hot mixture of DIDP/ESO). The plasticizers, present in the flexible PVC compound, exerted an important role in the process of intercalation and exfoliation of the clay, helping the formation of the nanocomposites.

Keywords

PVC, poly(vinyl chloride), polymer/clay nanocomposites

References

1. Chemical Market Associates - “2008 world vinyls analysis”, Chemical Market Associates, Inc., Houston (2008).

2. Chow, G.-M. & Kurihara, L. K. - “Chemical synthesis and processing of nanostructured powders and films”, in: Nanostructured materials: Processing, properties and potential applications, C. C. Kock (ed.), Noyes Publications, Norwich (2002).

3. Jordan, J.; Jacob, K. I.; Tannenbaum, R.; Sharaf, M. A. & Jasiuk, I. - Materials Science and Engineering: A, 393, p.1 (2004).

4. Schmidt, D.; Shah, D. & Giannelis, E. P. - Current Opinion in Solid State & Materials Science, 6, p.205 (2002).

5. Yang, F., Ou, Y. & Yu, Z. - Journal of Applied Polymer Science, 69, p.355 (1998).

6. Gilman, J. W. - Applied Clay Science, 15, p.31 (1999).

7. Giannelis, E. P. - Materials and Design, 13, p.100 (1992).

8. Lan, T.; Kaviratna, P. D. & Pinnavaia, T. J. - Chemistry of Materials, 6, p.573 (1994).

9. Wang, Z.; Lan, T. & Pinnavaia, T. J. - Chemistry of Materials, 8, p.2200 (1996).

10. Alexandre, M. & Dubois, P. - Materials Science and Engineering: R, 28, p.1 (2000).

11. Ray, S. S. & Okamoto, M. - Progress in Polymer Science, 28, p.1539 (2003).

12. Paul, D. R. & Robeson, L. M. - Polymer, 49, p.3187 (2008).

13. Pavlidou, S. & Papaspyrides, C. D. - Progress in Polymer Science, 33, p.1119 (2008).

14. Utracki, L. A. - “Clay-containing polymeric nanocomposites”, v.1, Rapra Technology Ltd., Shropshire (2004).

15. Rodolfo, Jr., A. & Mei, L. H. I. - Polímeros: Ciência e Tecnologia, 17, p.263 (2007).

16. Wang, D.; Parlow, D.; Yao, Q. & Wilkie, C. A. - Journal of Vinyl and Additive Technology, 7, p.203 (2001). 17. Schaefer, D. W. & Justice, R. S. - Macromolecules, 40, p.8501 (2007).

18. Yalcin, B. & Cakmak, M. - Polymer, 45, p.6623 (2004).

19. Kovarova, L.; Kalendova, A.; Gerard, J.-F.; Malac, J.; Simonik, J. & Weiss, Z. - Macromolecular Symposia, 221, p.105 (2005).

20. Peprnicek, T.; Duchet, J.; Kovarova, L.; Malac, J.; Gerard, J.-F. & Simonik, J. - Polymer Degradation and Stability, 91, p.1855 (2006).

21. Peprnicek, T.; Kalendova, A.; Pavlova, E.; Simonik, J.; Duchet, J. & Gerard, J.-F. - Polymer Degradation and Stability, 91, p.3322 (2006).

22. Francis, N. & Schmidit, D. F. - “PVC/layered silicate nanocomposites: preparation, characterization, and properties”, in: ANTEC 2007, Cincinnati – EUA, p.1238 (2007).

23. Kalendova, A.; Kovarova, L.; Malac, Z.; Malac, J.; Vaculik, J.; Hrncirik, J. & Simonik, J. - “Modified clay in polyvinyl chloride (PVC)”, in: ANTEC 2002, São Francisco – EUA (2002).

24. Southern Clay Products - “Cloisite® 30B - Typical physical properties bulletin”, disponível em www.scprod. com. Acesso em 4 fev. 2008.

25. Faulkner, P. G. - Journal of Macromolecular Science – Physics B, 11, p.251 (1975).

26. Rabinovitch, E. B. & Summers, J. - Journal of Vinyl Technology, 2, p.165 (1980).

27. Marques, R. P. & Covas, J. A. - “Processing characteristics of U-PVC compounds”, Companhia Industrial de Resinas Sintéticas, Estarreja (2003).

28. Fillot, L.-A.; Hajji, P.; Gauthier, C. & Masenelli-Varlot, K. - Journal of Vinyl and Additive Technology, 12, p.98 (2006).

29. Alves, J. P. D. & Rodolfo Jr., A. - Polímeros: Ciência e Tecnologia, 16, p.165 (2006).

30. Fornes, T. D.; Yoon, P. J.; Keskkula, H. & Paul, D. R. - Polymer, 42, p.9929 (2001).

588371297f8c9d0a0c8b476a polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections