Atrito e Desgaste de Recobrimentos de PET, Politeraftalato de Etileno, Pós-consumo Processados por Aspersão Térmica
Friction and Wear of a Thermal Sprayed PET - Poly(Ethylene Teraphthalate) Coating)
Branco, José Roberto T.; Sade, Wagner; Nunes, Rogério A. X.
http://dx.doi.org/10.1590/S0104-14282007000300015
Polímeros: Ciência e Tecnologia, vol.17, n3, p.244-249, 2007
Resumo
A aspersão térmica envolve processos de recobrimentos que podem utilizar materiais cerâmicos, poliméricos, metálicos ou misturas destes. O material a ser depositado é fundido total ou parcialmente. As partículas aquecidas são aceleradas e projetadas em direção a uma superfície devidamente preparada, onde se formam camadas com estrutura lamelar. Os efeitos das variáveis do processo de aspersão, pressão dos gases de combustão, taxa de alimentação e gás de arraste no transporte do material, sobre a resistência ao desgaste e atrito de filmes PET foram investigados. Os recobrimentos de PET foram caracterizados através do desgaste micro-abrasivo, utilizando o ensaio de caloteste, e da medida dos coeficientes de atrito, com o ensaio de pino-sobre-disco. Os valores do coeficiente de desgaste abrasivo e do coeficiente de atrito dos recobrimentos são comparados com os valores da garrafa PET utilizada como referência. Os coeficientes de desgaste encontrados foram similares aos valores de garrafas PET da ordem de 10-5. As análises estatísticas dos resultados deste trabalho indicam que os efeitos das interações das três variáveis, pressão dos gases de combustão, taxa de alimentação e gás de arraste foram significativos para o coeficiente de desgaste e não significativos para o coeficiente de atrito.
Palavras-chave
Aspersão térmica, PET, tribologia
Abstract
The thermal spray technique involves coating processes that can use ceramic, polymers, metallic materials or a blend of these. The material to be deposited is melted totally or partially, where the heated particles are accelerated and projected toward a prepared surface forming layers with a lamellar structure. The effect of the spray process parameters such as, combustion pressure, feed rate and carrier gas, on the wear resistance and friction of PET films was evaluated. The PET coatings were characterized by measuring the wear coefficient through the calowear type testing and the friction coefficients using pin-on-disk testing. The values of the abrasive wear coefficient and the friction coefficient of the coatings were compared to the values of the bottle PET reference sample. The wear coefficient values were similar to the values for the PET bottles, in the range of 10-5. The statistical analyses of the results indicate that the interaction effects of the three variables, gas pressure, feeding rate and carrier gas were significant for the wear coefficient but not for the friction coefficient.
Keywords
Thermal spray, PET, tribology
References
1. Herman, H. & Sampath, S. - Thermal Spray Coatings (2005).
2. Brogan, J. A. - Processing and Property Relationships of Thermally Sprayed Polymer Systems, New York: State University of New York at Stony Brook. (PhD Thesis) (1996).
3. Brogan, J. A. - MRS Bulletin (2000).
4. Bao, Y. & Gawne, D. T. - Effect of Processing on the Wear Resistance of Thermally Sprayed Epoxy Coatings, ASM International, Materials Park, Ohio, USA (1996).
5. Petrovicova, E. & Schadler, L. S. - International Materials Reviews, 47, 4 (2002).
6. Zhang, T.; Gawne, D. T. & Bao, Y. - The Effect of Deposition Parameters on The Degradation of Plasma Sprayed Polymer Coatings, Thermal Spray: Pratical Solutions for Engineering Problems, Edited by C. C. Berndt, ASM International, Ohio, p.231-237 (1996).
7. Briscoe, B. J. - Materials aspects of polymer wear, Scripta Metalurgica et Material, 24, p.839-844, (1990).
8. Lancaster, J. K. - Wear, 141, p.159-183, (1990).
9. Hutchings, I. M. - Tribology: Friction and Wear of Engineering Materials, Edward Arnold, London, p.51, (1992).
10. Briscoe B. J. & Sinha, S. K. - Wear of Polymers, Proceedings of the Institution of Mechanical Engineers, 216 (J6), p.401-413, (2002).
11. Branco, J. R. T.; Campos, S. R. V.; Duarte, L. T. & Lins, V. F. C. - Journal of Applied polymer Science, (2004).
12. Shipway, P.H.; Ngao, N.K. - Wear, 255, p.742-750 (2003).
13. Friedrich, K.; Reinicke, R. & Zhang, Z. - Wear of polymer composites, Proc Instn Engrs, 216 Part J: Engineering Tribology (2002).
14. Palabiyik, M. & Bahadur, S. - Tribological studies of polyamide 6 and high-density polyethylene blends filled with PTFE and cooper oxide and reinforced with short glass fibers, Wear, 253, p.369-376 (2002).
15. Kato, K. - Wear in relation to friction – a review, Wear, 241, p.151-157, (2000).
16. Zhang, S. W. - State-of-art of polymer tribology, Tribology International, 31, 1-3, p.49-60 (1998).
17. Unal, U. & Mimaroglu, A. - Influence of test conditions on the properties of polymers, Industrial Lubrification and Tribology (2003).