Interaction between Cholesterol and Chitosan in Langmuir Monolayers
Oliveira Junior, Osvaldo N.; Santos Junior, David S. dos; Pavinatto, Felippe J.
http://dx.doi.org/10.1590/S0104-14282005000200006
Polímeros: Ciência e Tecnologia, vol.15, n2, p.91-94, 2005
Abstract
Chitosan incorporated in the aqueous subphase is found to affect the Langmuir monolayers of cholesterol, causing the surface pressure and the surface potential isotherms to become more expanded. The mean molecular area per cholesterol molecule in the condensed monolayer increases from 53 Å2 in the absence of chitosan to 61 Å2 for a concentration of 0.100 mg/mL of chitosan in the subphase. If additional chitosan is incorporated in the subphase, no change is noted, which points to saturation in the effects from chitosan. The interaction between chitosan and cholesterol probably occurs via hydrogen bonding. The monolayer expansion is also manifested in the monolayer morphology, as indicated by Brewster angle microscopy measurements, where larger cholesterol domains are visualized when chitosan is present in the subphase.
Keywords
Cholesterol, chitosan, Langmuir monolayers
References
1. Gallaher, D. D. - Agro Food Industry Hi-Tech, 14, p. 32-35 (2003).
2. “Chitin and chitosan - 4th International Conference on Chitin and Chitosan”, Elsevier Applied Science, Trondheim (1989).
3. Lang, G.; Wendel, H. & Konrad, E. - US Patent 4,528,283
4. Thakkar, H.; Sharma, R.K.; Mishra, A.K.; Chuttani, K. & Murthy, R.S.R. – J. of Pharmacy and Pharmacology, 56, p. 1091-1099 (2004).
5. Yokoi, H.; Hayashi, S. & Kinoshita, T. - Progress in Polymer Science, 28, p. 341-357 (2003).
6. Sanchez, M.I.M. – “Interação de Moléculas Biologicamente Ativas com Filmes de Langmuir de Fosfolipídios” Tese de doutorado, Instituto de Física de São Carlos, USP, Brasil (2000).
7. Zheng, S.; Strzalka, J.; Jones, D.H.; Opella, S.J. & Blasie, J.K. – Biophys. J., 84, p. 2393-2415 (2003).
8. Caetano, W.; Ferreira, M.; Tabak, M.; Sanchez, M.I.M.; Oliveira Jr., O.N.; Kruger, P.; Schalke, M. & Losche, M. - Biophys. Chem., 91, p. 21-35 (2001).
9. Gomez-Serranillos, I.R.; Minones, J.; Dynarowicz-Latka, P. & Iribarnegaray, E. – Langmuir, 20, p. 928-933 (2004).
10. Sparr, E.; Eriksson, L.; Bouwstra, J. A. & Ekelund, K. – Langmuir, 17, p. 164-172 (2001).
11. Kim, K.; Kim, C. & Byun, Y. – Langmuir, 17, p. 5066- 5070, (2001).
12. Serfis, A.B.; Brancato, S. & Fliesler, S.J. - Biochimica et Biophysica Acta, 1511, p. 341-348 (2001).
13. Brzozowska, I. & Figaszewski, Z.A. - Biophysical Chemistry, 95, p. 173-179 (2002).
14. Li, M.; Xin, M. & Miyashita T. – Polymer International, 51, p. 889-891 (2002)
15. Bough, W.; Salter, W.L. & Perkinns, B.E. – Biotechnol. Bioeng., 20, p. 1931 (1978)
16. Signini, R. & Campana Filho, S.P. - Polymer Bulletin, 42, p. 159 -166 (1999)
17. Dos Santos Jr., D.S.; Pavinatto, F.J.; Balogh, D.T.; Misoguti, L.; Oliveira Jr., O.N. & Mendonça, C.R. - J. Coll. and Interf. Sci., 276, p. 138 -142 (2004).
18. Oliveira Jr, O.N.; Taylor, D.M.; Lewis, T.J.; Salvagno, S. & Stirling, C.J.M. - J. Chem. Soc.: Faraday Trans I, 85, p. 1009 (1989).
19. Dynarowicz-Latka, P.; Cavalli, A.; Silva Filho, D.A.; Milart, P.; Santos, M.C. & Oliveira Jr., O.N. - Chem. Phys. Lett., 337, p. 11, (2001).
20. Demchack, R.J. & Fort, T.J. - J. Coll. Interf. Sci., 46, p. 191 (1974).