Formation and Properties of Nylon 6 Nanocomposites
Fornes, T. D.; Paul, D. R.
http://dx.doi.org/10.1590/S0104-14282003000400004
Polímeros: Ciência e Tecnologia, vol.13, n4, p.212-217, 2003
Abstract
Sodium montmorillonite clay consists of platelets, one nanometer thick with large lateral dimensions, which can be used to achieve efficient reinforcement of polymer matrices. Formation of these nanocomposites requires modifying the clay with an appropriate organic surface treatment and optimized processing. Some of these techniques and the resulting property improvements (modulus, thermal expansion, heat distortion temperature, etc.) are reviewed here. It is shown that shear stress exerted on stacks of clay platelets play an important role in the mechanism of exfoliation. The modulus enhancement observed is of the order predicted by composite theories; however, the clay particles clearly affect the crystalline morphology of the polymer phase which may have an additional effect on some composite properties.
Keywords
Nanocomposites, nylon 6, organoclay, melt processing
References
1. LeBaron, P. C., Z. Wang & T. J. Pinnavaia- Appl. Clay Sci., 15(1-2), pp.11-29 (1999).
2. Pinnavaia, T. J. & G. W. Beall - "Polymer-clay nanocomposites", Wiley series in polymer science, New York (2000).
3. Alexandre, M. & P. Dubois- Mater. Sci. Eng., Rev., R28(1-2), pp.1-63 (2000).
4. Van Olphen, H. - "An introduction to clay colloid chemistry : for clay technologists, geologists, and soil scientists", 2d ed. Wiley, New York (1977.)
5. Fornes, T. D., P. J. Yoon, D. L. Hunter, H. Keskkula & D. R. Paul- Polym., 43(22), pp.5915-5933 (2002).
6. Lan, T., P. D. Kaviratna & T. J. Pinnavaia- Chem. Mater., 7(11), pp.2144-50 (1995).
7. Vaia, R. A. & E. P. Giannelis- Macromol., 30(25), pp.7990-7999 (1997).
8. Vaia, R. A. & E. P. Giannelis- Macromol., 30(25), pp.8000-8009 (1997).
9. Usuki, A., Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi & O. Kamigaito- J. Mater. Res., 8(5), pp.1179-84 (1993).
10. Cho, J. W. & D. R. Paul- Polymer, 42(3), pp.1083-1094 (2001).
11. Dennis, H. R., D. L. Hunter, D. Chang, S. Kim, J. L. White, J. W. Cho & D. R. Paul- Polym, 42(23), pp.9513-9522 (2001).
12. Fornes, T. D., P. J. Yoon, H. Keskkula & D. R. Paul- Polym, 42(25), pp.09929-40 (2001).
13. Fornes, T. D., P. J. Yoon, H. Keskkula & D. R. Paul- Polym., 43(7), pp.2121-2122 (2002).
14. Yoon, P. J., T. D. Fornes & D. R. Paul- Polym., 43(25), pp.6727-6741 (2002).
15. Fornes, T. D. & D. R. Paul- Polym., 44(14), pp.3945-3961 (2003).
16. Halpin, J. C. & J. L. Kardos- Polym. Eng. Sci., 16(5), pp.344-52 (1976).
17. Halpin, J. C., K. M. Finlayson & J. E. Ashton - "Primer on composite materials analysis", 2nd , rev. / ed. Technomic Pub. Co., Lancaster, Pa. (1992).
18. Mori, T. & K. Tanaka- Acta Metallurgica, 21, pp.571-4 (1973).
19. Tandon, G. P. & G. J. Weng- Polym Comp, 5(4), pp.327—333 (1984).
20. Fornes, T. D. & D. R. Paul- 44(14), pp.4993-5013 (2003).
21. Scobbo, JJ, - "Thermomechanical Performance of Polymer Blends", in: Polymer Blends: Formulation and Performance, ch. 29, vol 2., Paul,D.R. & Bucknall, C.B. (ed.), John Wiley, New York (1987).