Resinas poliméricas reticuladas com ação biocida: atual estado da arte
Crosslinked polymer resins with biocide action: state-of-the-art
Costa, Luciana C.; Mandu, Maria Aparecida Larrubiua Granado Moreira Rodrigues; Maria, Luiz Claudio de S.; Marques, Mônica R. C.
http://dx.doi.org/10.1590/0104-14281739
Polímeros: Ciência e Tecnologia, vol.25, n4, p.414-423, 2015
Resumo
Copolímeros reticulados à base de divinilbenzeno vêm sendo extensivamente empregados como suportes de catalisadores e complexantes de íons metálicos, adsorventes de compostos orgânicos e fases estacionárias em separações cromatográficas. A introdução de grupos biocidas a estes materiais é relatada em patentes desde a década de 1970, contudo apenas a partir do ano 2000 estes copolímeros passaram a ser aplicados também como suportes para grupos biocidas. A presente revisão apresenta as principais combinações de suportes poliméricos e grupos biocidas estudados com o objetivo de preparar resinas biocidas reticuladas. Procura-se estabelecer relação entre as características dessas resinas e seu mecanismo de ação biocida.
Palavras-chave
agentes antimicrobianos imobilizados em polímeros, biocida, copolímeros de estireno-divinilbenzeno, resinas poliméricas.
Abstract
Crosslinked copolymers of divinylbenzene have been extensively employed as supports for catalysts and chelating groups of metal ions, adsorbents of organic compounds and stationary phases for chromatography separations. The use of these copolymers as support for biocidal groups is reported in patents since the 1970s, but only after 2000 were these copolymers also applied as supports for biocidal groups. This paper describes the main combinations of polymeric supports and biocide groups employed in biocide polymer resins. The relationship between the characteristics of these resins and their mechanism of action is also established in this work.
Keywords
antimicrobial agents immobilized on polymers, biocide, styrene-divinylbenzene copolymers, polymeric resins.
References
1. Gottenbos, B., van der Mei, H. C., Klatter, F., Nieuwenhuis, P., & Busscher, H. J. (2002). In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials, 23(6), 1417-1423. http://dx.doi.org/10.1016/S0142-9612(01)00263-0. PMid:11829437.
2. Huang, J., Murata, H., Koepsel, R. R., Russell, A. J., & Matyjaszewski, K. (2007). Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules, 8(5), 1396-1399. http://dx.doi.org/10.1021/bm061236j. PMid:17417906.
3. Mc Donnel, G., & Russel, A. D. (1999). Antiseptics and disinfectants: activity, action, and resistance. Clinical Microbiology Reviews, 12(1), 147-179.
4. Amato, V., No., Nicodemo, A. C., & Lopes, H. V. (2007). Antibióticos na prática clínica. São Paulo: Sarvier.
5. Denyer, S. P. (1995). Mechanisms of action of antibacterial biocides. International Biodeterioration & Biodegradation, 36(3-4), 227-245. http://dx.doi.org/10.1016/0964-8305(96)00015-7.
6. Denyer, S. P., & Stewart, G. S. A. B. (1998). Mechanisms of action of disinfectants. International Biodeterioration & Biodegradation, 41(3-4), 261-268. http://dx.doi.org/10.1016/S0964-8305(98)00023-7.
7. Kenawy, R., Worley, S. D., & Broughton, R. (2007). The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules, 8(5), 1359-1384. http://dx.doi.org/10.1021/bm061150q. PMid:17425365.
8. Denyer, S. P., & Maillard, J. H (2002). Cellular impermeability and uptake of biocides and antibiotics in gram-negative bacteria. Journal of Applied Microbiology, 92(S1), 35–45. http://dx.doi.org/10.1046/j.1365-2672.92.5s1.19.x
9. Hu, F. X., Neoh, K. G., Cen, L., & Kang, E. T. (2005). Antibacterial and antifungal efficacy of surface functionalized polymeric beads in repeated applications. Biotechnology and Bioengineering, 89(4), 474-484. http://dx.doi.org/10.1002/bit.20384. PMid:15609269.
10. Jandrey, A. C. (2007). Desenvolvimento de resinas a base de 2-vinil-piridina contendo iodo e sua avaliação como agente bactericida (Tese de doutorado). Instituto Militar de Engenharia, Brasil.
11. Kawabata, N. (1992). Capture of micro-organisms and viruses by pyridinium-type polymers and application to biotechnology and water purification. Progress in Polymer Science, 17(1), 1-34. http://dx.doi.org/10.1016/0079-6700(92)90015-Q.
12. Valle, A. S. S., Costa, L. C., Marques, M. R. C., Silva, C. L. P., Santa Maria, L. C., Merçon, F., & Aguiar, A. P. (2011). Preparação de copolímeros à base de 2-vinilpiridina com propriedades bactericidas. Quimica Nova, 34(4), 577-583. http://dx.doi.org/10.1590/S0100-40422011000400005.
13. Valle, A. S. S., Marques, M. R. C., Costa, L. C., Santa Maria, L. C., Aguiar, A. P., & Mercon, F. (2013). Evaluation of bactericidal action of 2-vinylpiridine copolymerscontaining quaternary ammonium groups and their charge transfer complexes. Polímeros: Ciência e Tecnologia, 23(2), 152-160. http://dx.doi.org/10.1590/S0104-14282013005000023.
14. Qu, X., Alvarez, P. J. J., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Research, 47(12), 3931-3946. http://dx.doi.org/10.1016/j.watres.2012.09.058. PMid:23571110.
15. Kenawy, El-R, Abdel-Hay, F. I., El-Raheem, A., El-Shanshoury, R., & El-Newehy, M. H. (1998). Biologically active polymers: synthesis and antimicrobial activity of modified glycidyl methacrylate polymers having a quaternary ammonium and phosphonium groups. Journal of Controlled Release, 50(1-3), 145-152. http://dx.doi.org/10.1016/S0168-3659(97)00126-0. PMid:9685881.
16. Siedenbiedel, F., & Tiller, J. C. (2012). Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers, 4(1), 46-71. http://dx.doi.org/10.3390/polym4010046.
17. Rezende, S. M., Reis, M. C., Reid, M. G., Silva, P. L., Jr., Coutinho, F. M. B., San Gil, R. A. S., & Lachter, E. R. (2008). Transesterification of vegetable oils promoted by poly(styrene-divinylbenzene) and poly(divinylbenzene). Applied Catalysis A, General, 349(1-2), 198-203. http://dx.doi.org/10.1016/j.apcata.2008.07.030.
18. Flores, K. O. V., Aguiar, A. P., Aguiar, M. R. M. P., & Santa Maria, L. C. (2007). Microwave assisted Friedel–Crafts acylation reactions of Amberlite XAD-4™ resin. Materials Letters, 61(4-5), 1190-1196. http://dx.doi.org/10.1016/j.matlet.2006.06.081.
19. Coutinho, F. M. B., Rezende, S. M., & Soares, B. G. (2006). Characterization of sulfonated poly(styrene–divinylbenzene) and poly(divinylbenzene) and its application as catalysts in esterification reaction. Journal of Applied Polymer Science, 102(4), 3616-3627. http://dx.doi.org/10.1002/app.24046.
20. Rezende, S. M., Soares, B. G., Coutinho, F. M. B., Reis, S. C., Reid, M. G., Lachter, E. R., & Nascimento, R. S. V. (2005). Aplicação de resinas sulfônicas como catalisadores em reações de transesterificação de óleos vegetais. Polímeros: Ciência e Tecnologia, 15(3), 186-192. http://dx.doi.org/10.1590/S0104-14282005000300008.
21. Coutinho, F. M. B., Aponte, M. L., Barbosa, C. C. R., Costa, V. G., Lachter, E. R., & Tabak, D. (2003). Resinas sulfônicas: síntese, caracterização e avaliação em reações de alquilação. Polímeros: Ciência e Tecnologia, 13(3), 141-146. http://dx.doi.org/10.1590/S0104-14282003000300003.
22. Coutinho, F. M. B., & Rezende, S. M. (2001). Catalisadores sulfônicos imobilizados em 2013 síntese, caracterização e avaliação. Polímeros: Ciência e Tecnologia, 11(4), 222-233. http://dx.doi.org/10.1590/S0104-14282001000400012.
23. Cunha, L., Coutinho, F. M. B., & Gomes, A. S. (2004). Suportes poliméricos para catalisadores sulfônicos: síntese e caracterização. Polímeros: Ciência e Tecnologia, 14(1), 31-37. http://dx.doi.org/10.1590/S0104-14282004000100011.
24. Souza, M. A. V., Santa Maria, L. C., Costa, M. A. S., Wang, S. H., Costa, L. C., Araujo, H. C., Jr., & Amico, S. C. (2011). Synthesis, characterization and evaluation of phosphorylated resins in the removal of Pb2+ from aqueous solutions. Polymer Bulletin, 67(2), 237-249. http://dx.doi.org/10.1007/s00289-010-0373-z.
25. Costa, L. C., Gomes, A. S., Coutinho, F. M. B., & Teixeira, V. G. (2010). Chelating resins for mercury extraction based on grafting of polyacrylamide chains onto styrene–divinylbenzene copolymers by gamma irradiation. Reactive & Functional Polymers, 70(10), 738-746. http://dx.doi.org/10.1016/j.reactfunctpolym.2010.07.003.
26. Costa, L. C., Coutinho, F. M. B., Teixeira, V. G., & Gomes, A. S. (2007). Principais rotas de síntese de resinas complexantes de mercúrio. Polímeros: Ciência e Tecnologia, 17(2), 145-157. http://dx.doi.org/10.1590/S0104-14282007000200014.
27. Novais, M. H., Aguiar, A. P., Aguiar, M. R. M. P., & Santa Maria, L. C. (2006). Synthesis of porous copolymers network based on methyl methacrylate and evaluation in the Cu (II) extraction. Materials Letters, 60(11), 1412-1415. http://dx.doi.org/10.1016/j.matlet.2005.11.039.
28. Dutra, P., Toci, A., Riehl, C., Barbosa, C., & Coutinho, F. M. B. (2005). Adsorption of some elements from hydrochloric acid by anion Exchange. European Polymer Journal, 41(8), 1943-1946. http://dx.doi.org/10.1016/j.eurpolymj.2004.10.023.
29. Cassella, R. J., Magalhães, O. I. B., Couto, M. T., Lima, E. L. S., Neves, M. A. F. S., & Coutinho, F. M. B. (2005). On-line preconcentration and determination of Zn in natural water samples employing a styrene-divinylbenzene functionalized resin and flame atomic absorption spectrometry. Analytical Sciences, 21(8), 939-944. http://dx.doi.org/10.2116/analsci.21.939. PMid:16122164.
30. Teixeira, V. G., Coutinho, F. M. B., & Gomes, A. S. (2004). Resinas poliméricas para separação e pré-concentração de chumbo. Quimica Nova, 27(5), 754-762. http://dx.doi.org/10.1590/S0100-40422004000500015.
31. Santa Maria, L. C., Amorim, M. C. V., Aguiar, M. R. M. P., Guimarães, P. I. C., Costa, M. A. S., de Aguiar, A. P., Rezende, P. R., de Carvalho, M. S., Barbosa, F. G., Andrade, J. M., & Ribeiro, R. C. C. (2001). Chemical modification of cross-linked resin based on acrylonitrile for anchoring metal ions. Reactive & Functional Polymers, 49(2), 133-143. http://dx.doi.org/10.1016/S1381-5148(01)00068-2.
32. Messier, P. J. (2005). US Patent 6,899,868. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6,899,868.PN.&OS=PN/6,899,868&RS=PN/6,899,868
33. Messier, P. J. (2004). US Patent No 6,680,050. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6,680,050.PN.&OS=PN/6,680,050&RS=PN/6,680,050
34. Messier, P. J. (2003). US Patent No 6,592,821. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6,592,821.PN.&OS=PN/6,592,821&RS=PN/6,592,821
35. Shanbrom, E., Miekka, S. I., Pollock, R., Drohan, W. N., & Horton, T. W. (2000). US Patent No 6,096,216. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6,096,216.PN.&OS=PN/6,096,216&RS=PN/6,096,216
36. Miekka, S. I., Drohan, W. N., Ralston, A., & Xue, H. (2000). US Patent No 6,106,773. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PT, 20O1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6,106,773.PN.&OS=PN/6,106,773&RS=PN/6,106,773
37. Messier, P. J. (2000). US Patent No 6,045,820. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6,045,820.PN.&OS=PN/6,045,820&RS=PN/6,045,820
38. Lund, J. L. (1995). US Patent No 5,431,908. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=5,431,908.PN.&OS=PN/5,431,908&RS=PN/5,431,908
39. Fina, L. R., Lambert, J. L., & Bridges, R. L. (1991). US Patent No 4,999,190. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=4,999,190.PN.&OS=PN/4,999,190&RS=PN/4,999,190
40. Gartner, W. J. (1983). US Patent No 4,420,590. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=4,420,590.PN.&OS=PN/4,420,590&RS=PN/4,420,590
41. Lambert, J. L., & Fina, L. R. (1980). US Patent No 4,238,477. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=4,238,477.PN.&OS=PN/4,238,477&RS=PN/4,238,477
42. Hatch, G. L. (1980). US Patent No 4,190,529. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=4,190,529.PN.&OS=PN/4,190,529&RS=PN/4,190,529
43. Lambert, J. L., & Fina, L. R. (1975). US Patent No 3,923,665. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=3,923,665.PN.&OS=PN/3,923,665&RS=PN/3,923,665
44. Lambert, J. L., & Fina, L. R. (1974). US Patent No 3,817,860. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=3817860.PN.&OS=PN/3817860&RS=PN/3817860
45. Gangadharan, D., Harshvardan, K., Gnanasekar, G., Dixit, D., Popat, K. M., & Anand, P. S. (2010). Polymeric microspheres containing silver nanoparticles as a bactericidal agent for water disinfection. Water Research, 44(18), 5481-5487. http://dx.doi.org/10.1016/j.watres.2010.06.057. PMid:20673945.
46. Iconomopoulou, S. M., Andreopoulou, A. K., Soto, A., Kallitsis, J. K., & Voyiatzis, G. A. (2005). Incorporation of low molecular weight biocides into polystyrene-divinyl benzene beads with controlled release characteristics. Journal of Controlled Release, 102(1), 223-233. http://dx.doi.org/10.1016/j.jconrel.2004.10.006. PMid:15653147.
47. Muñoz-Bonilla, A., & Fernández-García, M. (2012). Polymeric materials with antimicrobial activity. Progress in Polymer Science, 37(2), 281-339. http://dx.doi.org/10.1016/j.progpolymsci.2011.08.005.
48. Ahmed, A. E. I., Hay, J. N., Bushell, M. E., Wardell, J. N., & Cavalli, G. (2008). Biocidal polymers (I): Preparation and biological activity of some novel biocidal polymers based on uramil and its azo-dyes. Reactive & Functional Polymers, 68(1), 248-260. http://dx.doi.org/10.1016/j.reactfunctpolym.2007.09.004.
49. Allison, B. C., Applegate, B. M., & Youngblood, J. P. (2007). Hemocompatibility of hydrophilic antimicrobial copolymers of alkylated 4-vinylpyridine. Biomacromolecules, 8(10), 2995-2999. http://dx.doi.org/10.1021/bm7004627. PMid:17877398.
50. Lu, G., Wu, D., & Fu, R. (2007). Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate. Reactive & Functional Polymers, 67(4), 355-366. http://dx.doi.org/10.1016/j.reactfunctpolym.2007.01.008.
51. Kurt, P., Wood, L., Ohman, D. E., & Wynne, K. J. (2007). Highly effective contact antimicrobial surfaces via polymer surface modifiers. Langmuir, 23(9), 4719-4723. http://dx.doi.org/10.1021/la063718m. PMid:17388618.
52. Gabriel, G. J., Som, A., Madkour, A. E., Eren, T., & Tew, G. N. (2007). Infectious disease: Connecting innate immunity to biocidal polymers. Materials Science and Engineering: R Reports, 57(1-6), 28-64. http://dx.doi.org/10.1016/j.mser.2007.03.002. PMid:18160969.
53. Murata, H., Koepsel, R. R., Matyjaszewski, K., & Russell, A. J. (2007). Permanent, non-leaching antibacterial surface--2: how high density cationic surfaces kill bacterial cells. Biomaterials, 28(32), 4870-4879. http://dx.doi.org/10.1016/j.biomaterials.2007.06.012. PMid:17706762.
54. Kenawy, E.-R., Abdel-Hay, F. I., El-Magd, A. A., & Mahmoud, Y. (2006). Biologically active polymers: VII. Synthesis and antimicrobial activity of some crosslinked copolymers with quaternary ammonium and phosphonium groups. Reactive & Functional Polymers, 66(4), 419-429. http://dx.doi.org/10.1016/j.reactfunctpolym.2005.09.002.
55. Cheng, Z., Zhu, X., Shi, Z. L., Neoh, K. G., & Kang, E. T. (2005). Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization. Industrial & Engineering Chemistry Research, 44(18), 7098-7104. http://dx.doi.org/10.1021/ie050225o.
56. Jiang, S., Wang, L., Yu, H., & Chen, Y. (2005). Preparation of crosslinked polystyrenes with quaternary ammonium and their antibacterial behavior. Reactive & Functional Polymers, 62(2), 209-213. http://dx.doi.org/10.1016/j.reactfunctpolym.2004.11.002.
57. Gelman, M. A., Weisblum, B., Lynn, D. M., & Gellman, S. H. (2004). Biocidal activity of polystyrenes that are cationic by virtue of protonation. Organic Letters, 6(4), 557-560. http://dx.doi.org/10.1021/ol036341+. PMid:14961622.
58. Park, E. S., Kim, H. S., Kim, M. N., & Yoon, J. S. (2004). Antibacterial activities of polystyrene-block-poly(4-vinyl pyridine) and poly(styrene-random-4-vinyl pyridine). European Polymer Journal, 40(12), 2819-2822. http://dx.doi.org/10.1016/j.eurpolymj.2004.07.025.
59. Popa, A., Davidescu, C. M., Trif, R., Ilia, G., Iliescu, S., & Dehelean, G. (2003). Study of quaternary ‘onium’ salts grafted on polymers: antibacterial activity of quaternary phosphonium salts grafted on ‘gel-type’ styrene–divinylbenzene copolymers. Reactive & Functional Polymers, 55(2), 151-158. http://dx.doi.org/10.1016/S1381-5148(02)00224-9.
60. Li, G., & Shen, J. (2000). A study of pyridinium-type functional polymers. IV. Behavioral features of the antibacterial activity of insoluble pyridinium-type polymers. Journal of Applied Polymer Science, 78(3), 676-684. http://dx.doi.org/10.1002/1097-4628(20001017)78:3<676::AID-APP240>3.0.CO;2-E.
61. Kanazawa, A., Ikeda, T., & Endo, T. (1994). Polymeric phosphonium salts as a novel class of cationic biocides. VII. Synthesis and antibacterial activity of polymeric phosphonium salts and their model compounds containing long alkyl chains. Journal of Applied Polymer Science, 53(9), 1237-1244. http://dx.doi.org/10.1002/app.1994.070530910.
62. Kanazawa, A., Ikeda, T., & Endo, T. (1994). Polymeric phosphonium salts as a novel class of cationic biocides. VIII. Synergistic effect on antibacterial activity of polymeric phosphonium and ammonium salts. Journal of Applied Polymer Science, 53(9), 1245-1249. http://dx.doi.org/10.1002/app.1994.070530911.
63. Lambert, J. L., Fina, G. T., & Fina, L. R. (1980). Preparation and properties of triiodide-, pentaiodide-, and heptaiodide- quaternary ammonium strong base anion-exchange resin disinfectants. Industrial & Engineering Chemistry Product Research and Development, 19(2), 256-258. http://dx.doi.org/10.1021/i360074a025.
64. Jandrey, A. C., Aguiar, A. P., Aguiar, M. R. M. P., Santa Maria, L. C., Mazzei, J. L., & Felzenszwalb, I. (2007). Iodine–poly(2-vinylpyridine-co-styrene-co-divinylbenzene) charge transfer complexes with antibacterial activity. European Polymer Journal, 43(11), 4712-4718. http://dx.doi.org/10.1016/j.eurpolymj.2007.07.042.
65. Jandrey, A. C., Santa Maria, L. C., Aguiar, A. P., Aguiar, M. R. M. P., Mazzei, J. L., & Fenlzenszwalb, I. (2004). Iodine bactericidal action adsorbed in 2-vinylpyridine copolymer networks. Journal of Applied Polymer Science, 93(2), 972-976. http://dx.doi.org/10.1002/app.20523.
66. Gazda, D. B., Lipert, R. J., Fritz, J. S., & Porter, M. C. (2004). Investigation of the iodine–poly(vinylpyrrolidone) interaction employed in the determination of biocidal iodine by colorimetric solid-phase extraction. Analytica Chimica Acta, 510(2), 241-247. http://dx.doi.org/10.1016/j.aca.2004.01.010.
67. Ahmed, A. E. I., Hay, J. N., Bushell, M. E., Wardell, J. N., & Cavalli, G. (2008). Biocidal polymers (II): Determination of biological activity of novel N-halamine biocidal polymers and evaluation for use in water filters. Reactive & Functional Polymers, 68(10), 1448-1458. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.06.021.
68. Chen, Z., & Sun, Y. (2006). N-halamine-based antimicrobial additives for polymers: preparation, characterization, and antimicrobial activity. Industrial & Engineering Chemistry Research, 45(8), 2634-2640. http://dx.doi.org/10.1021/ie060088a. PMid:18714370.
69. Barnes, K., Liang, J., Wu, R., Worley, S. D., Lee, J., Broughton, R. M., & Huang, T. S. (2006). Synthesis and antimicrobial applications of 5,5′-ethylenebis[5-methyl-3-(3-triethoxysilylpropyl)hydantoin]. Biomaterials, 27(27), 4825-4830. http://dx.doi.org/10.1016/j.biomaterials.2006.05.023. PMid:16757023.
70. Liang, J., Chen, Y., Barnes, K., Wu, R., Worley, S. D., & Huang, T.-S. (2006). N-halamine/quat siloxane copolymers for use in biocidal coatings. Biomaterials, 27(11), 2495-2501. http://dx.doi.org/10.1016/j.biomaterials.2005.11.020. PMid:16352336.
71. Chen, Y., Worley, S. D., Huang, T. S., Weese, J., Kim, J., Wei, C.-I., & Williams, J. F. (2004). Biocidal polystyrene beads. IV. Functionalized methylated polystyrene. Journal of Applied Polymer Science, 92(1), 368-372. http://dx.doi.org/10.1002/app.20038.
72. Chen, Y., Worley, S. D., Kim, J., Wei, C.-I., Chen, T.-Y., Santiago, J. I., Williams, J. F., & Sun, G. (2003). Biocidal poly(styrenehydantoin) beads for disinfection of water. Industrial & Engineering Chemistry Research, 42(2), 280-284. http://dx.doi.org/10.1021/ie020266+.
73. Kim, B. R., Anderson, J. E., Mueller, S. A., Gaines, W. A., & Kendall, A. M. (2002). Literature review--efficacy of various disinfectants against Legionella in water systems. Water Research, 36(18), 4433-4444. http://dx.doi.org/10.1016/S0043-1354(02)00188-4. PMid:12418646.
74. Eknoian, M. W., Worley, S. D., Bickert, J., & Williams, J. F. (1999). Novel antimicrobial N-halamine polymer coatings generated by emulsion polymerization. Polymer, 40(6), 1367-1371. http://dx.doi.org/10.1016/S0032-3861(98)00383-8.
75. Sun, G., Allen, L. C., Luckie, E. P., Wheatley, W. B., & Worley, S. D. (1995). Disinfection of water by N-halamine biocidal polymers. Industrial & Engineering Chemistry Research, 34(11), 4106-4109. http://dx.doi.org/10.1021/ie00038a054.
76. Sun, Y., & Sun, G. (2002). Synthesis, characterization, and antibacterial activities of novel N-halamine polymer beads prepared by suspension copolymerization. Macromolecules, 35(23), 8909-8912. http://dx.doi.org/10.1021/ma020691e.
77. Jeong, J.-H., Byoun, Y.-S., & Lee, Y.S. (2002). Poly(styrene-alt-maleic anhydride)-4-aminophenol conjugate: synthesis and antibacterial activity. Reactive & Functional Polymers, 50(3), 257-263. http://dx.doi.org/10.1016/S1381-5148(01)00120-1.
78. Jeong, J.-H., Byoun, Y.-S., Ko, S.-B., & Lee, Y. S. (2001). Chemical modification of poly(styrene-alt-maleic anhydride) with antimicrobial 4-aminobenzoic acid and 4-hydroxybenzoic acid. Journal of Industrial and Engineering Chemistry, 7(5), 310-315. Recuperado em 10 de julho de 2014, de http://www.cheric.org/PDF/JIEC/IE07/IE07-5-0310.pdf
79. Souza, M. A. V., Santa Maria, L. C., Costa, L. C., Galvão, R. C., Hui, W. S., & Merçon, F. (2012). Evaluation of the biocide activity of phosphorylated and sulfophosphorylated resins. Materials Letters, 74(1), 121-124. http://dx.doi.org/10.1016/j.matlet.2012.01.093.
80. Costa, L. C., Marques, M. R. C., Tiosso, R. B., Cantarim, J. P., & Merçon, F. (2012). Evaluation of the biocidal capacity of hypercrosslinked resins containing dithiocarbamate groups. Macromolecular Symposia, 319(1), 121-128. http://dx.doi.org/10.1002/masy.201100175.
81. Emerson, D. W. (1991). Slow release of active chlorine and bromine from styrene-divinylbenzene copolymers bearing N,N-dichlorosulfonamide, N-chloro-N-alkylsulfonamide, and N-bromo-N-alkylsulfonamide functional groups. Polymer supported reagents. Industrial & Engineering Chemistry Research, 30(11), 2426-2430. http://dx.doi.org/10.1021/ie00059a010.
82. Jaeger, W., Bohrisch, J., & Laschewsky, A. (2010). Synthetic polymers with quaternary nitrogen atoms—Synthesis and structure of the most used type of cationic polyelectrolytes. Progress in Polymer Science, 35(5), 511-577. http://dx.doi.org/10.1016/j.progpolymsci.2010.01.002.
83. Santa Maria, L. C., Souza, J. D. C., Aguiar, M. R. M. P., Wang, S. H., Mazzei, J. L., Felzenszwalb, I., & Amico, S. C. (2008). Synthesis, characterization, and bactericidal properties of composites based on crosslinked resins containing silver. Journal of Applied Polymer Science, 107(3), 1879-1886. http://dx.doi.org/10.1002/app.27224.
84. Santa Maria, L. C., Oliveira, R. O., Merçon, F., Borges, M. E. R. S. P., Barud, H. S., Ribeiro, S. J. L., Messaddeq, Y., & Wang, S. H. (2010). Preparation and bactericidal effect of composites based on crosslinked copolymers containing silver nanoparticles. Polímeros: Ciência e Tecnologia, 20(3), 227-230. http://dx.doi.org/10.1590/S0104-14282010005000028.
85. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346-2353. http://dx.doi.org/10.1088/0957-4484/16/10/059. PMid:20818017.
86. Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6), 1712-1720. http://dx.doi.org/10.1128/AEM.02218-06. PMid:17261510.
87. Oliveira, R. O. (2010). Preparação e avaliação biocida de compósitos à base de resinas reticuladas contendo nanopartículas de prata (Dissertação de mestrado). Universidade do Estado do Rio de Janeiro, Brasil.
88. Paschoalino, M. P., Marcone, G. P. S., & Jardim, W. F. (2010). Os nanomateriais e a questão ambiental. Quimica Nova, 33(2), 421-430. http://dx.doi.org/10.1590/S0100-40422010000200033.
89. Braydich-Stolle, L., Hussain, S., Schlager, J. J., & Hofmann, M. C. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences, 88(2), 412-419. http://dx.doi.org/10.1093/toxsci/kfi256. PMid:16014736.
2. Huang, J., Murata, H., Koepsel, R. R., Russell, A. J., & Matyjaszewski, K. (2007). Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules, 8(5), 1396-1399. http://dx.doi.org/10.1021/bm061236j. PMid:17417906.
3. Mc Donnel, G., & Russel, A. D. (1999). Antiseptics and disinfectants: activity, action, and resistance. Clinical Microbiology Reviews, 12(1), 147-179.
4. Amato, V., No., Nicodemo, A. C., & Lopes, H. V. (2007). Antibióticos na prática clínica. São Paulo: Sarvier.
5. Denyer, S. P. (1995). Mechanisms of action of antibacterial biocides. International Biodeterioration & Biodegradation, 36(3-4), 227-245. http://dx.doi.org/10.1016/0964-8305(96)00015-7.
6. Denyer, S. P., & Stewart, G. S. A. B. (1998). Mechanisms of action of disinfectants. International Biodeterioration & Biodegradation, 41(3-4), 261-268. http://dx.doi.org/10.1016/S0964-8305(98)00023-7.
7. Kenawy, R., Worley, S. D., & Broughton, R. (2007). The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules, 8(5), 1359-1384. http://dx.doi.org/10.1021/bm061150q. PMid:17425365.
8. Denyer, S. P., & Maillard, J. H (2002). Cellular impermeability and uptake of biocides and antibiotics in gram-negative bacteria. Journal of Applied Microbiology, 92(S1), 35–45. http://dx.doi.org/10.1046/j.1365-2672.92.5s1.19.x
9. Hu, F. X., Neoh, K. G., Cen, L., & Kang, E. T. (2005). Antibacterial and antifungal efficacy of surface functionalized polymeric beads in repeated applications. Biotechnology and Bioengineering, 89(4), 474-484. http://dx.doi.org/10.1002/bit.20384. PMid:15609269.
10. Jandrey, A. C. (2007). Desenvolvimento de resinas a base de 2-vinil-piridina contendo iodo e sua avaliação como agente bactericida (Tese de doutorado). Instituto Militar de Engenharia, Brasil.
11. Kawabata, N. (1992). Capture of micro-organisms and viruses by pyridinium-type polymers and application to biotechnology and water purification. Progress in Polymer Science, 17(1), 1-34. http://dx.doi.org/10.1016/0079-6700(92)90015-Q.
12. Valle, A. S. S., Costa, L. C., Marques, M. R. C., Silva, C. L. P., Santa Maria, L. C., Merçon, F., & Aguiar, A. P. (2011). Preparação de copolímeros à base de 2-vinilpiridina com propriedades bactericidas. Quimica Nova, 34(4), 577-583. http://dx.doi.org/10.1590/S0100-40422011000400005.
13. Valle, A. S. S., Marques, M. R. C., Costa, L. C., Santa Maria, L. C., Aguiar, A. P., & Mercon, F. (2013). Evaluation of bactericidal action of 2-vinylpiridine copolymerscontaining quaternary ammonium groups and their charge transfer complexes. Polímeros: Ciência e Tecnologia, 23(2), 152-160. http://dx.doi.org/10.1590/S0104-14282013005000023.
14. Qu, X., Alvarez, P. J. J., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Research, 47(12), 3931-3946. http://dx.doi.org/10.1016/j.watres.2012.09.058. PMid:23571110.
15. Kenawy, El-R, Abdel-Hay, F. I., El-Raheem, A., El-Shanshoury, R., & El-Newehy, M. H. (1998). Biologically active polymers: synthesis and antimicrobial activity of modified glycidyl methacrylate polymers having a quaternary ammonium and phosphonium groups. Journal of Controlled Release, 50(1-3), 145-152. http://dx.doi.org/10.1016/S0168-3659(97)00126-0. PMid:9685881.
16. Siedenbiedel, F., & Tiller, J. C. (2012). Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers, 4(1), 46-71. http://dx.doi.org/10.3390/polym4010046.
17. Rezende, S. M., Reis, M. C., Reid, M. G., Silva, P. L., Jr., Coutinho, F. M. B., San Gil, R. A. S., & Lachter, E. R. (2008). Transesterification of vegetable oils promoted by poly(styrene-divinylbenzene) and poly(divinylbenzene). Applied Catalysis A, General, 349(1-2), 198-203. http://dx.doi.org/10.1016/j.apcata.2008.07.030.
18. Flores, K. O. V., Aguiar, A. P., Aguiar, M. R. M. P., & Santa Maria, L. C. (2007). Microwave assisted Friedel–Crafts acylation reactions of Amberlite XAD-4™ resin. Materials Letters, 61(4-5), 1190-1196. http://dx.doi.org/10.1016/j.matlet.2006.06.081.
19. Coutinho, F. M. B., Rezende, S. M., & Soares, B. G. (2006). Characterization of sulfonated poly(styrene–divinylbenzene) and poly(divinylbenzene) and its application as catalysts in esterification reaction. Journal of Applied Polymer Science, 102(4), 3616-3627. http://dx.doi.org/10.1002/app.24046.
20. Rezende, S. M., Soares, B. G., Coutinho, F. M. B., Reis, S. C., Reid, M. G., Lachter, E. R., & Nascimento, R. S. V. (2005). Aplicação de resinas sulfônicas como catalisadores em reações de transesterificação de óleos vegetais. Polímeros: Ciência e Tecnologia, 15(3), 186-192. http://dx.doi.org/10.1590/S0104-14282005000300008.
21. Coutinho, F. M. B., Aponte, M. L., Barbosa, C. C. R., Costa, V. G., Lachter, E. R., & Tabak, D. (2003). Resinas sulfônicas: síntese, caracterização e avaliação em reações de alquilação. Polímeros: Ciência e Tecnologia, 13(3), 141-146. http://dx.doi.org/10.1590/S0104-14282003000300003.
22. Coutinho, F. M. B., & Rezende, S. M. (2001). Catalisadores sulfônicos imobilizados em 2013 síntese, caracterização e avaliação. Polímeros: Ciência e Tecnologia, 11(4), 222-233. http://dx.doi.org/10.1590/S0104-14282001000400012.
23. Cunha, L., Coutinho, F. M. B., & Gomes, A. S. (2004). Suportes poliméricos para catalisadores sulfônicos: síntese e caracterização. Polímeros: Ciência e Tecnologia, 14(1), 31-37. http://dx.doi.org/10.1590/S0104-14282004000100011.
24. Souza, M. A. V., Santa Maria, L. C., Costa, M. A. S., Wang, S. H., Costa, L. C., Araujo, H. C., Jr., & Amico, S. C. (2011). Synthesis, characterization and evaluation of phosphorylated resins in the removal of Pb2+ from aqueous solutions. Polymer Bulletin, 67(2), 237-249. http://dx.doi.org/10.1007/s00289-010-0373-z.
25. Costa, L. C., Gomes, A. S., Coutinho, F. M. B., & Teixeira, V. G. (2010). Chelating resins for mercury extraction based on grafting of polyacrylamide chains onto styrene–divinylbenzene copolymers by gamma irradiation. Reactive & Functional Polymers, 70(10), 738-746. http://dx.doi.org/10.1016/j.reactfunctpolym.2010.07.003.
26. Costa, L. C., Coutinho, F. M. B., Teixeira, V. G., & Gomes, A. S. (2007). Principais rotas de síntese de resinas complexantes de mercúrio. Polímeros: Ciência e Tecnologia, 17(2), 145-157. http://dx.doi.org/10.1590/S0104-14282007000200014.
27. Novais, M. H., Aguiar, A. P., Aguiar, M. R. M. P., & Santa Maria, L. C. (2006). Synthesis of porous copolymers network based on methyl methacrylate and evaluation in the Cu (II) extraction. Materials Letters, 60(11), 1412-1415. http://dx.doi.org/10.1016/j.matlet.2005.11.039.
28. Dutra, P., Toci, A., Riehl, C., Barbosa, C., & Coutinho, F. M. B. (2005). Adsorption of some elements from hydrochloric acid by anion Exchange. European Polymer Journal, 41(8), 1943-1946. http://dx.doi.org/10.1016/j.eurpolymj.2004.10.023.
29. Cassella, R. J., Magalhães, O. I. B., Couto, M. T., Lima, E. L. S., Neves, M. A. F. S., & Coutinho, F. M. B. (2005). On-line preconcentration and determination of Zn in natural water samples employing a styrene-divinylbenzene functionalized resin and flame atomic absorption spectrometry. Analytical Sciences, 21(8), 939-944. http://dx.doi.org/10.2116/analsci.21.939. PMid:16122164.
30. Teixeira, V. G., Coutinho, F. M. B., & Gomes, A. S. (2004). Resinas poliméricas para separação e pré-concentração de chumbo. Quimica Nova, 27(5), 754-762. http://dx.doi.org/10.1590/S0100-40422004000500015.
31. Santa Maria, L. C., Amorim, M. C. V., Aguiar, M. R. M. P., Guimarães, P. I. C., Costa, M. A. S., de Aguiar, A. P., Rezende, P. R., de Carvalho, M. S., Barbosa, F. G., Andrade, J. M., & Ribeiro, R. C. C. (2001). Chemical modification of cross-linked resin based on acrylonitrile for anchoring metal ions. Reactive & Functional Polymers, 49(2), 133-143. http://dx.doi.org/10.1016/S1381-5148(01)00068-2.
32. Messier, P. J. (2005). US Patent 6,899,868. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6,899,868.PN.&OS=PN/6,899,868&RS=PN/6,899,868
33. Messier, P. J. (2004). US Patent No 6,680,050. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6,680,050.PN.&OS=PN/6,680,050&RS=PN/6,680,050
34. Messier, P. J. (2003). US Patent No 6,592,821. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6,592,821.PN.&OS=PN/6,592,821&RS=PN/6,592,821
35. Shanbrom, E., Miekka, S. I., Pollock, R., Drohan, W. N., & Horton, T. W. (2000). US Patent No 6,096,216. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6,096,216.PN.&OS=PN/6,096,216&RS=PN/6,096,216
36. Miekka, S. I., Drohan, W. N., Ralston, A., & Xue, H. (2000). US Patent No 6,106,773. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PT, 20O1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6,106,773.PN.&OS=PN/6,106,773&RS=PN/6,106,773
37. Messier, P. J. (2000). US Patent No 6,045,820. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6,045,820.PN.&OS=PN/6,045,820&RS=PN/6,045,820
38. Lund, J. L. (1995). US Patent No 5,431,908. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=5,431,908.PN.&OS=PN/5,431,908&RS=PN/5,431,908
39. Fina, L. R., Lambert, J. L., & Bridges, R. L. (1991). US Patent No 4,999,190. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=4,999,190.PN.&OS=PN/4,999,190&RS=PN/4,999,190
40. Gartner, W. J. (1983). US Patent No 4,420,590. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=4,420,590.PN.&OS=PN/4,420,590&RS=PN/4,420,590
41. Lambert, J. L., & Fina, L. R. (1980). US Patent No 4,238,477. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=4,238,477.PN.&OS=PN/4,238,477&RS=PN/4,238,477
42. Hatch, G. L. (1980). US Patent No 4,190,529. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=4,190,529.PN.&OS=PN/4,190,529&RS=PN/4,190,529
43. Lambert, J. L., & Fina, L. R. (1975). US Patent No 3,923,665. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=3,923,665.PN.&OS=PN/3,923,665&RS=PN/3,923,665
44. Lambert, J. L., & Fina, L. R. (1974). US Patent No 3,817,860. Washington: U.S. Patent and Trademark Office. Recuperado em 10 de julho de 2014, de http://patft.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=3817860.PN.&OS=PN/3817860&RS=PN/3817860
45. Gangadharan, D., Harshvardan, K., Gnanasekar, G., Dixit, D., Popat, K. M., & Anand, P. S. (2010). Polymeric microspheres containing silver nanoparticles as a bactericidal agent for water disinfection. Water Research, 44(18), 5481-5487. http://dx.doi.org/10.1016/j.watres.2010.06.057. PMid:20673945.
46. Iconomopoulou, S. M., Andreopoulou, A. K., Soto, A., Kallitsis, J. K., & Voyiatzis, G. A. (2005). Incorporation of low molecular weight biocides into polystyrene-divinyl benzene beads with controlled release characteristics. Journal of Controlled Release, 102(1), 223-233. http://dx.doi.org/10.1016/j.jconrel.2004.10.006. PMid:15653147.
47. Muñoz-Bonilla, A., & Fernández-García, M. (2012). Polymeric materials with antimicrobial activity. Progress in Polymer Science, 37(2), 281-339. http://dx.doi.org/10.1016/j.progpolymsci.2011.08.005.
48. Ahmed, A. E. I., Hay, J. N., Bushell, M. E., Wardell, J. N., & Cavalli, G. (2008). Biocidal polymers (I): Preparation and biological activity of some novel biocidal polymers based on uramil and its azo-dyes. Reactive & Functional Polymers, 68(1), 248-260. http://dx.doi.org/10.1016/j.reactfunctpolym.2007.09.004.
49. Allison, B. C., Applegate, B. M., & Youngblood, J. P. (2007). Hemocompatibility of hydrophilic antimicrobial copolymers of alkylated 4-vinylpyridine. Biomacromolecules, 8(10), 2995-2999. http://dx.doi.org/10.1021/bm7004627. PMid:17877398.
50. Lu, G., Wu, D., & Fu, R. (2007). Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate. Reactive & Functional Polymers, 67(4), 355-366. http://dx.doi.org/10.1016/j.reactfunctpolym.2007.01.008.
51. Kurt, P., Wood, L., Ohman, D. E., & Wynne, K. J. (2007). Highly effective contact antimicrobial surfaces via polymer surface modifiers. Langmuir, 23(9), 4719-4723. http://dx.doi.org/10.1021/la063718m. PMid:17388618.
52. Gabriel, G. J., Som, A., Madkour, A. E., Eren, T., & Tew, G. N. (2007). Infectious disease: Connecting innate immunity to biocidal polymers. Materials Science and Engineering: R Reports, 57(1-6), 28-64. http://dx.doi.org/10.1016/j.mser.2007.03.002. PMid:18160969.
53. Murata, H., Koepsel, R. R., Matyjaszewski, K., & Russell, A. J. (2007). Permanent, non-leaching antibacterial surface--2: how high density cationic surfaces kill bacterial cells. Biomaterials, 28(32), 4870-4879. http://dx.doi.org/10.1016/j.biomaterials.2007.06.012. PMid:17706762.
54. Kenawy, E.-R., Abdel-Hay, F. I., El-Magd, A. A., & Mahmoud, Y. (2006). Biologically active polymers: VII. Synthesis and antimicrobial activity of some crosslinked copolymers with quaternary ammonium and phosphonium groups. Reactive & Functional Polymers, 66(4), 419-429. http://dx.doi.org/10.1016/j.reactfunctpolym.2005.09.002.
55. Cheng, Z., Zhu, X., Shi, Z. L., Neoh, K. G., & Kang, E. T. (2005). Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization. Industrial & Engineering Chemistry Research, 44(18), 7098-7104. http://dx.doi.org/10.1021/ie050225o.
56. Jiang, S., Wang, L., Yu, H., & Chen, Y. (2005). Preparation of crosslinked polystyrenes with quaternary ammonium and their antibacterial behavior. Reactive & Functional Polymers, 62(2), 209-213. http://dx.doi.org/10.1016/j.reactfunctpolym.2004.11.002.
57. Gelman, M. A., Weisblum, B., Lynn, D. M., & Gellman, S. H. (2004). Biocidal activity of polystyrenes that are cationic by virtue of protonation. Organic Letters, 6(4), 557-560. http://dx.doi.org/10.1021/ol036341+. PMid:14961622.
58. Park, E. S., Kim, H. S., Kim, M. N., & Yoon, J. S. (2004). Antibacterial activities of polystyrene-block-poly(4-vinyl pyridine) and poly(styrene-random-4-vinyl pyridine). European Polymer Journal, 40(12), 2819-2822. http://dx.doi.org/10.1016/j.eurpolymj.2004.07.025.
59. Popa, A., Davidescu, C. M., Trif, R., Ilia, G., Iliescu, S., & Dehelean, G. (2003). Study of quaternary ‘onium’ salts grafted on polymers: antibacterial activity of quaternary phosphonium salts grafted on ‘gel-type’ styrene–divinylbenzene copolymers. Reactive & Functional Polymers, 55(2), 151-158. http://dx.doi.org/10.1016/S1381-5148(02)00224-9.
60. Li, G., & Shen, J. (2000). A study of pyridinium-type functional polymers. IV. Behavioral features of the antibacterial activity of insoluble pyridinium-type polymers. Journal of Applied Polymer Science, 78(3), 676-684. http://dx.doi.org/10.1002/1097-4628(20001017)78:3<676::AID-APP240>3.0.CO;2-E.
61. Kanazawa, A., Ikeda, T., & Endo, T. (1994). Polymeric phosphonium salts as a novel class of cationic biocides. VII. Synthesis and antibacterial activity of polymeric phosphonium salts and their model compounds containing long alkyl chains. Journal of Applied Polymer Science, 53(9), 1237-1244. http://dx.doi.org/10.1002/app.1994.070530910.
62. Kanazawa, A., Ikeda, T., & Endo, T. (1994). Polymeric phosphonium salts as a novel class of cationic biocides. VIII. Synergistic effect on antibacterial activity of polymeric phosphonium and ammonium salts. Journal of Applied Polymer Science, 53(9), 1245-1249. http://dx.doi.org/10.1002/app.1994.070530911.
63. Lambert, J. L., Fina, G. T., & Fina, L. R. (1980). Preparation and properties of triiodide-, pentaiodide-, and heptaiodide- quaternary ammonium strong base anion-exchange resin disinfectants. Industrial & Engineering Chemistry Product Research and Development, 19(2), 256-258. http://dx.doi.org/10.1021/i360074a025.
64. Jandrey, A. C., Aguiar, A. P., Aguiar, M. R. M. P., Santa Maria, L. C., Mazzei, J. L., & Felzenszwalb, I. (2007). Iodine–poly(2-vinylpyridine-co-styrene-co-divinylbenzene) charge transfer complexes with antibacterial activity. European Polymer Journal, 43(11), 4712-4718. http://dx.doi.org/10.1016/j.eurpolymj.2007.07.042.
65. Jandrey, A. C., Santa Maria, L. C., Aguiar, A. P., Aguiar, M. R. M. P., Mazzei, J. L., & Fenlzenszwalb, I. (2004). Iodine bactericidal action adsorbed in 2-vinylpyridine copolymer networks. Journal of Applied Polymer Science, 93(2), 972-976. http://dx.doi.org/10.1002/app.20523.
66. Gazda, D. B., Lipert, R. J., Fritz, J. S., & Porter, M. C. (2004). Investigation of the iodine–poly(vinylpyrrolidone) interaction employed in the determination of biocidal iodine by colorimetric solid-phase extraction. Analytica Chimica Acta, 510(2), 241-247. http://dx.doi.org/10.1016/j.aca.2004.01.010.
67. Ahmed, A. E. I., Hay, J. N., Bushell, M. E., Wardell, J. N., & Cavalli, G. (2008). Biocidal polymers (II): Determination of biological activity of novel N-halamine biocidal polymers and evaluation for use in water filters. Reactive & Functional Polymers, 68(10), 1448-1458. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.06.021.
68. Chen, Z., & Sun, Y. (2006). N-halamine-based antimicrobial additives for polymers: preparation, characterization, and antimicrobial activity. Industrial & Engineering Chemistry Research, 45(8), 2634-2640. http://dx.doi.org/10.1021/ie060088a. PMid:18714370.
69. Barnes, K., Liang, J., Wu, R., Worley, S. D., Lee, J., Broughton, R. M., & Huang, T. S. (2006). Synthesis and antimicrobial applications of 5,5′-ethylenebis[5-methyl-3-(3-triethoxysilylpropyl)hydantoin]. Biomaterials, 27(27), 4825-4830. http://dx.doi.org/10.1016/j.biomaterials.2006.05.023. PMid:16757023.
70. Liang, J., Chen, Y., Barnes, K., Wu, R., Worley, S. D., & Huang, T.-S. (2006). N-halamine/quat siloxane copolymers for use in biocidal coatings. Biomaterials, 27(11), 2495-2501. http://dx.doi.org/10.1016/j.biomaterials.2005.11.020. PMid:16352336.
71. Chen, Y., Worley, S. D., Huang, T. S., Weese, J., Kim, J., Wei, C.-I., & Williams, J. F. (2004). Biocidal polystyrene beads. IV. Functionalized methylated polystyrene. Journal of Applied Polymer Science, 92(1), 368-372. http://dx.doi.org/10.1002/app.20038.
72. Chen, Y., Worley, S. D., Kim, J., Wei, C.-I., Chen, T.-Y., Santiago, J. I., Williams, J. F., & Sun, G. (2003). Biocidal poly(styrenehydantoin) beads for disinfection of water. Industrial & Engineering Chemistry Research, 42(2), 280-284. http://dx.doi.org/10.1021/ie020266+.
73. Kim, B. R., Anderson, J. E., Mueller, S. A., Gaines, W. A., & Kendall, A. M. (2002). Literature review--efficacy of various disinfectants against Legionella in water systems. Water Research, 36(18), 4433-4444. http://dx.doi.org/10.1016/S0043-1354(02)00188-4. PMid:12418646.
74. Eknoian, M. W., Worley, S. D., Bickert, J., & Williams, J. F. (1999). Novel antimicrobial N-halamine polymer coatings generated by emulsion polymerization. Polymer, 40(6), 1367-1371. http://dx.doi.org/10.1016/S0032-3861(98)00383-8.
75. Sun, G., Allen, L. C., Luckie, E. P., Wheatley, W. B., & Worley, S. D. (1995). Disinfection of water by N-halamine biocidal polymers. Industrial & Engineering Chemistry Research, 34(11), 4106-4109. http://dx.doi.org/10.1021/ie00038a054.
76. Sun, Y., & Sun, G. (2002). Synthesis, characterization, and antibacterial activities of novel N-halamine polymer beads prepared by suspension copolymerization. Macromolecules, 35(23), 8909-8912. http://dx.doi.org/10.1021/ma020691e.
77. Jeong, J.-H., Byoun, Y.-S., & Lee, Y.S. (2002). Poly(styrene-alt-maleic anhydride)-4-aminophenol conjugate: synthesis and antibacterial activity. Reactive & Functional Polymers, 50(3), 257-263. http://dx.doi.org/10.1016/S1381-5148(01)00120-1.
78. Jeong, J.-H., Byoun, Y.-S., Ko, S.-B., & Lee, Y. S. (2001). Chemical modification of poly(styrene-alt-maleic anhydride) with antimicrobial 4-aminobenzoic acid and 4-hydroxybenzoic acid. Journal of Industrial and Engineering Chemistry, 7(5), 310-315. Recuperado em 10 de julho de 2014, de http://www.cheric.org/PDF/JIEC/IE07/IE07-5-0310.pdf
79. Souza, M. A. V., Santa Maria, L. C., Costa, L. C., Galvão, R. C., Hui, W. S., & Merçon, F. (2012). Evaluation of the biocide activity of phosphorylated and sulfophosphorylated resins. Materials Letters, 74(1), 121-124. http://dx.doi.org/10.1016/j.matlet.2012.01.093.
80. Costa, L. C., Marques, M. R. C., Tiosso, R. B., Cantarim, J. P., & Merçon, F. (2012). Evaluation of the biocidal capacity of hypercrosslinked resins containing dithiocarbamate groups. Macromolecular Symposia, 319(1), 121-128. http://dx.doi.org/10.1002/masy.201100175.
81. Emerson, D. W. (1991). Slow release of active chlorine and bromine from styrene-divinylbenzene copolymers bearing N,N-dichlorosulfonamide, N-chloro-N-alkylsulfonamide, and N-bromo-N-alkylsulfonamide functional groups. Polymer supported reagents. Industrial & Engineering Chemistry Research, 30(11), 2426-2430. http://dx.doi.org/10.1021/ie00059a010.
82. Jaeger, W., Bohrisch, J., & Laschewsky, A. (2010). Synthetic polymers with quaternary nitrogen atoms—Synthesis and structure of the most used type of cationic polyelectrolytes. Progress in Polymer Science, 35(5), 511-577. http://dx.doi.org/10.1016/j.progpolymsci.2010.01.002.
83. Santa Maria, L. C., Souza, J. D. C., Aguiar, M. R. M. P., Wang, S. H., Mazzei, J. L., Felzenszwalb, I., & Amico, S. C. (2008). Synthesis, characterization, and bactericidal properties of composites based on crosslinked resins containing silver. Journal of Applied Polymer Science, 107(3), 1879-1886. http://dx.doi.org/10.1002/app.27224.
84. Santa Maria, L. C., Oliveira, R. O., Merçon, F., Borges, M. E. R. S. P., Barud, H. S., Ribeiro, S. J. L., Messaddeq, Y., & Wang, S. H. (2010). Preparation and bactericidal effect of composites based on crosslinked copolymers containing silver nanoparticles. Polímeros: Ciência e Tecnologia, 20(3), 227-230. http://dx.doi.org/10.1590/S0104-14282010005000028.
85. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346-2353. http://dx.doi.org/10.1088/0957-4484/16/10/059. PMid:20818017.
86. Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6), 1712-1720. http://dx.doi.org/10.1128/AEM.02218-06. PMid:17261510.
87. Oliveira, R. O. (2010). Preparação e avaliação biocida de compósitos à base de resinas reticuladas contendo nanopartículas de prata (Dissertação de mestrado). Universidade do Estado do Rio de Janeiro, Brasil.
88. Paschoalino, M. P., Marcone, G. P. S., & Jardim, W. F. (2010). Os nanomateriais e a questão ambiental. Quimica Nova, 33(2), 421-430. http://dx.doi.org/10.1590/S0100-40422010000200033.
89. Braydich-Stolle, L., Hussain, S., Schlager, J. J., & Hofmann, M. C. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences, 88(2), 412-419. http://dx.doi.org/10.1093/toxsci/kfi256. PMid:16014736.