Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Reprocessability of PHB in extrusion: ATR-FTIR, tensile tests and thermal studies

Rivas, Leonardo Fábio; Casarin, Suzan Aline; Nepomuceno, Neymara Cavalcante; Alencar, Marie Isabele; Agnelli, José Augusto Marcondes; Medeiros, Eliton Souto de; Wanderley Neto, Alcides de Oliveira; Oliveira, Maurício Pinheiro de; Medeiros, Antônio Marcos de; Santos, Amélia Severino Ferreira e

Downloads: 3
Views: 738


Mechanical recycling of biodegradable plastics has to be encouraged, since the consumption of energy and raw materials can be reduced towards a sustainable development in plastics materials. In this study, the evolution of thermal and mechanical properties, as well as structural changes of poly(hydroxybutyrate) (PHB) up to three extrusion cycles were investigated. Results indicated a significant reduction in mechanical properties already at the second extrusion cycle, with a reduction above 50% in the third cycle. An increase in the crystallinity index was observed due to chemicrystallization process during degradation by chain scission. On the other hand, significant changes in the chemical structure or in thermal stability of PHB cannot be detected by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analyses (TGA), respectively.


biopolymer, degradation, PHB, recycling, reprocessing.


1. Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: a global review of solid waste management. Washington: World Bank.

2. Thompson, R. C., Moore, C. J., vom Saal, F. S., & Swan, S. H. (2009). Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1526), 2153-2166. PMid:19528062. http://dx.doi.org/10.1098/rstb.2009.0053.

3. Davis, G., & Song, J. H. (2006). Biodegradable packaging based on raw materials from crops and their impact on waste management. Industrial Crops and Products, 23(2), 147-161. http://dx.doi.org/10.1016/j.indcrop.2005.05.004.

4. Le Duigou, A., Pillin, I., Bourmaud, A., Davies, P., & Baley, C. (2008). Effect of recycling on mechanical behaviour of biocompostable flax/poly(L-lactide) composites. Composites. Part A, Applied Science and Manufacturing, 39(9), 1471-1478. http://dx.doi.org/10.1016/j.compositesa.2008.05.008.

5. Pillin, I., Montrelay, N., Bourmaud, A., & Grohens, Y. (2008). Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid). Polymer Degradation & Stability, 93(2), 321-328. http://dx.doi.org/10.1016/j.polymdegradstab.2007.12.005.

6. Nishida, H., Fan, Y., Mori, T., Oyagi, N., Shirai, Y., & Endo, T. (2005). Feedstock recycling of flame-resisting poly(lactic acid) aluminum hydroxide composite. Industrial & Engineering Chemistry Research, 44(5), 1433-1437. http://dx.doi.org/10.1021/ie049208+.

7. Sikorska, W., Richert, J., Rydz, J., Musioł, M., Adamus, G., Janeczek, H., & Kowalczuk, M. (2012). Degradability studies of poly(L-lactide) after multi-reprocessing experiments in extruder. Polymer Degradation & Stability, 97(10), 1891-1897. http://dx.doi.org/10.1016/j.polymdegradstab.2012.03.049.

8. Gurieff, N., & Lant, P. (2007). Comparative life cycle assessment and financial analysis of mixed culture polyhydroxyalkanoate production. Bioresource Technology, 98(17), 3393-3403. PMid:17632000. http://dx.doi.org/10.1016/j.biortech.2006.10.046.

9. Shah, A. A., Kato, S., Shintani, N., Kamini, N. R., & Nakajima-Kambe, T. (2014). Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters. Applied Microbiology and Biotechnology, 98(8), 3437-3447. PMid:24522729. http://dx.doi.org/10.1007/s00253-014-5558-1.

10. Coutinho, B. C., Miranda, G. B., Sampaio, G. R., Souza, L. B. S., Santana, W. J., & Coutinho, H. D. M. (2004). A importância e as vantagens do polihidroxibutirato (plástico biodegradável). Holos, 20(3), 76-81. http://dx.doi.org/10.15628/holos.2004.49.

11. Sánchez, R. J., Schripsema, J., Silva, L. F., Taciro, M. K., Pradella, J. G. C., & Gomez, J. G. C. (2003). Medium-chain-length Polyhydroxy-Alkanoic Acids (PHAMCL) produced by Pseudomonas Putida IPT 046 from renewable sources. European Polymer Journal, 39(7), 1385-1394. http://dx.doi.org/10.1016/S0014-3057(03)00019-3.

12. Doi, Y. (1990). Microbial polyesters. New York: VCH Publishers Inc.

13. Hablot, E., Bordes, P., Pollet, E., & Averous, L. (2008). Thermal and thermo-mechanical degradation of poly(3-hydroxybutyrate)-based multiphase systems. Polymer Degradation & Stability, 93(2), 413-421. http://dx.doi.org/10.1016/j.polymdegradstab.2007.11.018.

14. Nguyen, S., Yu, G., & Marchessault, R. (2002). Thermal degradation of poly(3-hydroxyalkanoates): preparation of well-defined oligomers. Biomacromolecules, 3(1), 219-224. PMid:11866577. http://dx.doi.org/10.1021/bm0156274.

15. Sadi, R. K. (2010). Compatibilization and degradation study of Polypropylene/Poly(3-hydroxybutyrate) (PP/PHB) blends (Doctoral thesis). Escola Politécnica, Universidade de São Paulo, São Paulo.

16. Melchiors, M., Keul, H., & Höcker, H. (1996). Depolymerization of poly[(R)-3-hydroxybutyrate] to cyclic oligomers and polymerization of the cyclic trimer: an example of thermodynamic recycling. Macromolecules, 29(20), 6442-6451. http://dx.doi.org/10.1021/ma9604350.

17. Yang, X., Clénet, J., Xu, H., Odelius, K., & Hakkarainen, M. (2015). Two step extrusion process: from thermal recycling of PHB to plasticized PLA by reactive extrusion grafting of PHB degradation products onto PLA chains. Macromolecules, 48(8), 2509-2518. PMid:27053818. http://dx.doi.org/10.1021/acs.macromol.5b00235.

18. Spekreijse, J., Le Nôtre, J., Sanders, J. P. M., & Scott, E. L. (2015). Conversion of polyhydroxybutyrate (PHB) to methyl crotonate for the production of biobased monomers. Journal of Applied Polymer Science, 132(35), n/a. http://dx.doi.org/10.1002/app.42462.

19. Osanai, Y., Toshima, K., & Matsumura, S. (2003). Enzymatic degradation of poly(R,S-3-hydroxybutanoate) to cyclic oligomers under continuous flow. Green Chemistry, 5(5), 567-570. http://dx.doi.org/10.1039/B304640K.

20. Grassie, N., Murray, E. J., & Holmes, P. A. (1984). The thermal degradation of poly(-(d)-b-hydroxybutyric acid): part 1 – Identification and quantitative analysis of products. Polymer Degradation & Stability, 6(1), 47-61. http://dx.doi.org/10.1016/0141-3910(84)90016-8.

21. Karlsson, S., Sares, C., Renstad, R., & Albertsson, A. C. (1994). Gas chromatographic, liquid chromatographic and gas chromatographic-mass spectrometric identification of degradation products in accelerated aged microbial polyhydroxyalkanoates. Journal of Chromatography. A, 669(1-2), 97-102. PMid:8075778. http://dx.doi.org/10.1016/0021-9673(94)80341-2.

22. Yu, P. H., Chua, H., Huang, A. L., Lo, W., & Chen, G. Q. (1998). Conversion of food industrial wastes into bioplastics. Applied Biochemistry and Biotechnology, 70-72(1), 603-614. PMid:18576025. http://dx.doi.org/10.1007/BF02920172.

23. King, P. P. (1982). Biotechnology. An industrial view. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 32(1), 2-8. http://dx.doi.org/10.1002/jctb.5030320103.

24. Rosa, D. S., & Pântano, R., Fo. (2003). Biodegradação: um ensaio com polímeros. Itatiba: Moara.

25. Foster, L. J. R., & Tighe, B. J. (2005). Centrifugally spun polyhydroxybutyrate fibres: accelerated hydrolytic degradation studies. Polymer Degradation & Stability, 87(1), 1-10. http://dx.doi.org/10.1016/j.polymdegradstab.2003.11.012.

26. Ariffin, H., Nishida, H., Shirai, Y., & Hassan, M. A. (2010). Highly selective transformation of poly[(R)-3-hydroxybutyric acid] into trans-crotonic acid by catalytic thermal degradation. Polymer Degradation & Stability, 95(8), 1375-1381. http://dx.doi.org/10.1016/j.polymdegradstab.2010.01.018.

27. Kim, K. J., Doi, Y., & Abe, H. (2008). Effect of metal compounds on thermal degradation behavior of aliphatic poly(hydroxyalkanoic acid)s. Polymer Degradation & Stability, 93(4), 776-785. http://dx.doi.org/10.1016/j.polymdegradstab.2008.01.026.

28. Farid, N. F. S. M., Ariffin, H., Mamat, M. R. Z., Mohd Zahari, M. A. K., & Hassan, M. A. (2015). Non-solvent-based pretreatment of poly(3-hydroxybutyrate) for improved bio-based crotonic acid production. RSC Advances, 5(42), 33546-33553. http://dx.doi.org/10.1039/C5RA03017J.

29. Ariffin, H., Nishida, H., Shirai, Y., & Hassan, M. A. (2008). Determination of multiple thermal degradation mechanisms of poly(3-hydroxybutyrate). Polymer Degradation & Stability, 93(8), 1433-1439. http://dx.doi.org/10.1016/j.polymdegradstab.2008.05.020.

30. Kopinke, F. D., Remmler, M., & Mackenzie, K. (1996). Thermal decomposition of biodegradable polyesters-I: Poly(β-hydroxybutyric acid). Polymer Degradation & Stability, 52(1), 25-38. http://dx.doi.org/10.1016/0141-3910(95)00221-9.

31. Aoyagi, Y., Yamashita, K., & Doi, Y. (2002). Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone], and poly [(S)-lactide]. Polymer Degradation & Stability, 76(1), 53-59. http://dx.doi.org/10.1016/S0141-3910(01)00265-8.

32. Hong, S. G., Lin, Y. C., & Lin, C. H. (2008). Crystallization and degradation behaviors of treated polyhydroxybutyrates. Reactive & Functional Polymers, 68(11), 1516-1523. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.08.003.

33. Kawalec, M., Adamus, G. Y., Kurcok, P., Kowalczuk, M., Foltran, I., Focarete, M. L., & Scandola, M. (2007). Carboxylate-induced degradation of poly(3-hydroxybutyrate)s. Biomacromolecules, 8(4), 1053-1058. PMid:17330956. http://dx.doi.org/10.1021/bm061155n.

34. Galego, N., & Rozsa, C. (1999). Thermal decomposition of some poly(b-hydroxyalcanoates). Polymer International, 48(12), 1202-1204. http://dx.doi.org/10.1002/(SICI)1097-0126(199912)48:12<1202::AID-PI223>3.0.CO;2-D.

35. Lehrle, R., Williams, R., French, C., & Hammond, T. (1995). Thermolysis and methanolysis of poly(b-hydroxybutyrate): random scission assessed by statistical analysis of molecular weight distributions. Macromolecules, 28(13), 4408-4414. http://dx.doi.org/10.1021/ma00117a008.

36. Bahari, K., Mitomo, H., Enjoji, T., Yoshii, F., & Makuuchi, K. (1998). Degradability of poly(3-hydroxybutyrate) and its copolymer grafted with styrene by radiation. Polymer Degradation & Stability, 61(2), 245-252. http://dx.doi.org/10.1016/S0141-3910(97)00147-X.

37. Lee, H. K., Ismail, J., Kammer, H. W., & Bakar, M. A. (2005). Melt reaction in blends of poly(3-hydroxybutyrate) (PHB) and epoxidized natural rubber (ENR-50). Journal of Applied Polymer Science, 95(1), 113-129. http://dx.doi.org/10.1002/app.20808.

38. Hong, S. G., Gau, T. K., & Huang, S. C. (2011). Enhancement of the crystallization and thermal stability of polyhydroxybutyrate by polymeric additives. Journal of Thermal Analysis and Calorimetry, 103(3), 967-975. http://dx.doi.org/10.1007/s10973-010-1180-3.

39. Morikawa, H., & Marchessault, R. H. (1981). Pyrolysis of bacterial polyalkanoates. Canadian Journal of Chemistry, 59(15), 2306-2313. http://dx.doi.org/10.1139/v81-334.

40. Ballistreri, A., Garozzo, D., Giuffrida, M., Impallomeni, G., & Montaudo, G. (1989). Analytical degradation: an approach to the structural analysis of microbial polyesters by different methods. Journal of Analytical and Applied Pyrolysis, 16(3), 239-253. http://dx.doi.org/10.1016/0165-2370(89)80028-2.

41. Rosa, D. S., Calil, M. R., Guedes, C. G. F., & Santos, C. E. O. (2001). The Effect of UV-B Irradiation on the biodegradability of poly-β-hydroxybutyrate (PHB) and poly-ε-caprolactone (PCL). Journal of Polymers and the Environment, 9(3), 109-113. http://dx.doi.org/10.1023/A:1020498710586.

42. Kopinke, F. D., & Mackenzie, K. (1997). Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(beta-hydroxybutyric acid). Journal of Analytical and Applied Pyrolysis, 40-41, 43-53. http://dx.doi.org/10.1016/S0165-2370(97)00022-3.

43. Barham, P. J., Keller, A., Otun, E. L., & Holmes, P. A. (1984). Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. Journal of Materials Science, 19(9), 2781-2794. http://dx.doi.org/10.1007/BF01026954.

44. Srubar, W. V., 3rd, Wright, Z. C., Tsui, A., Michel, A. T., Billington, S. L., & Frank, C. W. (2012). Characterizing the effects of ambient aging on the mechanical and physical properties of two commercially available bacterial thermoplastics. Polymer Degradation & Stability, 97(10), 1922-1929. http://dx.doi.org/10.1016/j.polymdegradstab.2012.04.011.

45. Coutinho, F. M. B., Mello, I. L., & Santa Maria, L. C. (2003). Polietileno: principais tipos, propriedades e aplicações. Polímeros. Ciência e Tecnologia, 13(1), 1-13. http://dx.doi.org/10.1590/S0104-14282003000100005.

46. El-Hadi, A., Schnabel, R., Straube, E., Müller, G., & Henning, S. (2002). Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polymer Testing, 21(6), 665-674. http://dx.doi.org/10.1016/S0142-9418(01)00142-8.

47. Sadi, R. K., Fechine, G. J. M., & Demarquette, N. R. (2010). Photodegradation of poly(3-hydroxybutyrate). Polymer Degradation & Stability, 95(12), 2318-2327. http://dx.doi.org/10.1016/j.polymdegradstab.2010.09.003.

48. Rabello, M. S., & White, J. R. (1997). Crystallization and melting behavior of photodegraded polypropylene - I. Chemi-crystallization. Polymer, 38(26), 6379-6387. http://dx.doi.org/10.1016/S0032-3861(97)00213-9.

49. Renstad, R., Karlsson, S., & Albertsson, A. C. (1997). Influence of processing parameters on the molecular weight and mechanical properties of poly(3-hydroxybutyrate-3-hydroxyvalerate). Polymer Degradation & Stability, 57(3), 331-338. http://dx.doi.org/10.1016/S0141-3910(97)00028-1.

50. Kendall, A. (2012). A life cycle assessment of biopolymer production from material recovery facility residuals. Resources, Conservation and Recycling, 61, 69-74. http://dx.doi.org/10.1016/j.resconrec.2012.01.008.

51. Currann, M. A. (1996). Environmental life-cycle assessment. New York: McGraw Hill.

52. Feller, J. F., & Bourmaud, A. (2003). Rheological and calorimetric properties of recycled bisphenol A poly(carbonate). Polymer Degradation & Stability, 82(1), 99-104. http://dx.doi.org/10.1016/S0141-3910(03)00169-1.

53. Spinace, M. A. S., & De Paoli, M. A. (2004). Nonisothermal crystallization of reprocessed poly(ethylene terephthalate). Journal of Applied Polymer Science, 91(1), 525-531. http://dx.doi.org/10.1002/app.13230.

54. Javierre, C., Claveria, I., Ponz, L., Aisa, J., & Fernandez, A. (2007). Influence of the recycled material percentage on the rheological behaviour of HDPE for injection moulding process. Waste Management (New York, N.Y.), 27(5), 656-663. PMid:16707257. http://dx.doi.org/10.1016/j.wasman.2006.03.005.

55. Santos, A. S. F., Agnelli, J. A. M., Trevisan, D. W., & Manrich, S. (2002). Degradation and stabilization of polyolefins from municipal plastic waste during multiple extrusions under different reprocessing conditions. Polymer Degradation & Stability, 77(3), 441-447. http://dx.doi.org/10.1016/S0141-3910(02)00101-5.

56. Hamzehlou, S. H., & Katbab, A. A. (2007). Bottle-to-bottle recycling of PET via nanostructure formation by melt intercalation in twin screw compounder: improved thermal, barrier, and microbiological properties. Journal of Applied Polymer Science, 106(2), 1375-1382. http://dx.doi.org/10.1002/app.26730.

57. Abad, M. J., Ares, A., Barral, L., Cano, J., Díez, F. J., García-Garabal, S., López, J., & Ramírez, C. (2004). Effects of a mixture of stabilizers on the structure and mechanical properties of polyethylene during reprocessing. Journal of Applied Polymer Science, 92(6), 3910-3916. http://dx.doi.org/10.1002/app.20420.

58. Chen, C., Fei, B., Peng, S., Zhuang, Y., Dong, L., & Feng, Z. (2002). The Kinetics of the Thermal Decomposition of Poly(3-hydroxybutyrate) and Maleated Poly(3-hydroxybutyrate). Journal of Applied Polymer Science, 84(9), 1789-1796. http://dx.doi.org/10.1002/app.10463.

59. Koning, G. J. M., Lemstra, P. J., Hill, D. J. T., Carswell, T. G., & O’Donnell, J. H. (1992). Ageing phenomena in bacterial poly[(R)-3-hydroxybutyrate] I. A study on the mobility in poly [(R)-3-hydroxybutyrate] powders by monitoring the radical decay with temperature after radiolysis at 77 K. Polymer, 33(15), 3295-3297. http://dx.doi.org/10.1016/0032-3861(92)90250-Z.

60. Koning, G. J. M., & Lemstra, P. J. (1993). Crystallization phenomena in bacterial poly[(R)-3- hydroxybutyrate]: 2. Embrittlement and rejuvenation. Polymer, 34(19), 4089-4094. http://dx.doi.org/10.1016/0032-3861(93)90671-V.

61. Ong, Y. T., Ahmad, A. L., Zein, S. H. S., Sudesh, K., & Tan, S. H. (2011). Poly(3-hydroxybutyrate)-functionalised multi-walled carbon nanotubes/chitosan green nanocomposite membranes and their application in pervaporation. Separation and Purification Technology, 76(3), 419-427. http://dx.doi.org/10.1016/j.seppur.2010.11.013.

62. Gonzalez, A., Irusta, L., Fernández-Berridi, M. J., Iriarte, M., & Iruin, J. J. (2005). Application of pyrolysis/gas chromatography/Fourier transform infrared spectroscopy and TGA techniques in the study of thermal degradation of poly (3-hydroxybutyrate). Polymer Degradation & Stability, 87(2), 347-354. http://dx.doi.org/10.1016/j.polymdegradstab.2004.09.005.

63. Vogel, C., Morita, S., Sato, H., Noda, I., Ozaki, Y., & Siesler, H. W. (2007). Thermal Degradation of Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) in Nitrogen and Oxygen Studied by Thermogravimetric–Fourier Transform Infrared Spectroscopy. Applied Spectroscopy, 61(7), 755-764. PMid:17697470. http://dx.doi.org/10.1366/000370207781393370.

64. Yu, J., Plackett, D., & Chen, L. X. L. (2005). Kinetics and mechanism of the monomeric products from abiotic hydrolysis of poly[(R)-3-hydroxybutyrate] under acidic and alkaline conditions. Polymer Degradation & Stability, 89(2), 289-299. http://dx.doi.org/10.1016/j.polymdegradstab.2004.12.026.

65. Bhargava, R., & Levi, I. W. (Ed.). (2005). Spectrochemical analysis using infrared multichannel detectors. Oxford: Blackwell Publishing. http://dx.doi.org/10.1002/9780470988541.

66. Hoffmann, R. (1970). The norcaradiene cicloheptatriene equilibrium. Tetrahedron Letters, 11(33), 2907-2909. http://dx.doi.org/10.1016/S0040-4039(01)98370-4.

5b7b12010e8825f355896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections