Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2386
Polímeros: Ciência e Tecnologia
Original Article

Removal of Remazol brilliant violet textile dye by adsorption using rice hulls

Ribeiro, Geyse Adriana Corrêa; Silva, Domingos Sérgio Araújo; Santos, Clayane Carvalho dos; Vieira, Adriana Pires; Bezerra, Cícero Wellington Brito; Tanaka, Auro Atsushi; Santana, Sirlane Aparecida Abreu

Downloads: 0
Views: 1080

Abstract

The release of industrial effluents into the environment causes widespread contamination of aquatic systems. Adsorption is seen as one of the most promising treatment processes, and lignocellulosic materials have gained prominence as adsorbents. This study investigates the potential of rice hulls, either in natura or treated with nitric acid, as adsorbents for removal of the dye. The adsorbents were characterized by infrared spectroscopy, solid state 13C-NMR, thermogravimetric analysis, and pH at point of zero charge. The dye adsorption experiments were carried out in batch mode, using different experimental conditions. The kinetic adsorption data could be fitted using the model of Elovich. The Freundlich model provided the best fit to the isothermal data. The thermodynamic parameters confirmed the spontaneity of the adsorption process. These adsorbents offer an alternative for dye removal, with advantages including biomass availability and low cost.

Keywords

adsorption, remazol, rice hull.

References

1. Zeng, S., Duan, S., Tang, R., Li, L., Liu, C., & Sun, D. (2014). Magnetically separable Ni0.6Fe2.4O4 nanoparticles as an effective adsorbent for dye removal: Synthesis and study on the kinetic and thermodynamic behaviors for dye adsorption. Chemical Engineering Journal, 258, 218-228. http://dx.doi.org/10.1016/j.cej.2014.07.093.

2. Peng, X., Huang, D., Odoom-Wubah, T., Fu, D., Huang, J., & Qin, Q. (2014). Adsorption of anionic and cationic dyes on ferromagnetic ordered mesoporous carbon from aqueous solution: equilibrium, thermodynamic and kinetics. Journal of Colloid and Interface Science, 430, 272-282. PMid:24973701. http://dx.doi.org/10.1016/j.jcis.2014.05.035.

3. Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9), 1061-1085. PMid:15993052. http://dx.doi.org/10.1016/j.biortech.2005.05.001.

4. Durán-Jiménez, G., Hernández-Montoya, V., Montes-Morán, M. A., Bonilla-Petriciolet, A., & Rangel-Vázquez, N. A. (2014). Adsorption of dyes with different molecular properties on activated carbons prepared from lignocellulosic wastes by Taguchi method. Microporous and Mesoporous Materials, 199, 99-107. http://dx.doi.org/10.1016/j.micromeso.2014.08.013.

5. Guaratini, C. C. I., & Zanoni, M. V. B. (2000). Corantes Têxteis. Quimica Nova, 23(1), 71-78. http://dx.doi.org/10.1590/S0100-40422000000100013.

6. Sathishkumar, P., Mani, A., & Thayumanavan, P. (2012). Utilization of agro-industrial waste Jatropha curcas pods as an activated carbon for the adsorption of reactive dye Remazol Brilliant Blue R (RBBR). J. Journal of Cleaner Production, 22(1), 67-75. http://dx.doi.org/10.1016/j.jclepro.2011.09.017.

7. Zhong, Z.-Y., Yang, Q., Li, X.-M., Luo, K., Liu, Y., & Zeng, G.-M. (2012). Preparation of peanut hull-based activated carbon by microwave-induced phosphoric acid activation and its application in Remazol Brilliant Blue R adsorption. Industrial Crops and Products, 37(1), 178-185. http://dx.doi.org/10.1016/j.indcrop.2011.12.015.

8. Bertazzoli, R., & Pelegrini, R. (2002). Descoloração e degradação de poluentes orgânicos em soluções aquosas através do processo fotoeletroquímico. Quimica Nova, 25(3), 477-482. http://dx.doi.org/10.1590/S0100-40422002000300022.

9. Freire, R. S., & Pereira, W. S. (2005). Ferro zero: Uma nova abordagem para o tratamento de águas contaminadas com compostos orgânicos poluentes. Quimica Nova, 28(1), 130-136. http://dx.doi.org/10.1590/S0100-40422005000100022.

10. Souza, C. R. L., & Peralta-Zamora, P. (2005). Degradação de corantes reativos pelo sistema ferro metálico/peróxido de hidrogênio. Quimica Nova, 28(2), 226-228. http://dx.doi.org/10.1590/S0100-40422005000200011.

11. Moraes, S. G., Freire, R. S., & Durán, N. (2000). Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes. Chemosphere, 40(4), 369-373. PMid:10665401. http://dx.doi.org/10.1016/S0045-6535(99)00239-8.

12. Shu, H.-Y., & Chang, M.-C. (2005). Decolorization effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes. Dyes and Pigments, 65(1), 25-31. http://dx.doi.org/10.1016/j.dyepig.2004.06.014.

13. Dallago, R. M., Smaniotto, A., & Oliveira, L. C. A. (2005). Resíduos sólidos de curtumes como adsorventes para a remoção de corantes em meio aquoso. Quimica Nova, 28(3), 433-437. http://dx.doi.org/10.1590/S0100-40422005000300013.

14. Adamson, A. W., & Gast, A. P. (1997). Physical chemistry of surfaces. New York: John Wiley & Sons.

15. Mak, S.-Y., & Chen, D.-H. (2004). Fast adsorption of methylene blue on polyacrylic acid-bond iron oxide magnetic nanoparticles. Dyes and Pigments, 61(1), 93-98. http://dx.doi.org/10.1016/j.dyepig.2003.10.008.

16. Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97(1-3), 219-243. PMid:12573840. http://dx.doi.org/10.1016/S0304-3894(02)00263-7.

17. McKay, G. (1980). Colour removal by adsorption. American Dyestuff Reporter, 69, 38. http://dx.doi.org/10.1016/0043-1354(88)90165-0.

18. Vieira, A. P., Santana, S. A. A., Bezerra, C. W. B., Silva, H. A. S. S., Chaves, J. A. P., Melo, J. C. P., Silva, E. C., Fo., & Airoldi, C. (2009). Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp. Journal of Hazardous Materials, 166(2-3), 1272-1278. PMid:19150173. http://dx.doi.org/10.1016/j.jhazmat.2008.12.043.

19. Costa, E. P., Santana, S. A. A., Bezerra, C. W. B., Silva, H. A. S., & Schultz, M. S. (2009). Uso da casca de arroz como adsorvente na remoção do Corante têxtil vermelho remazol 5R. Caderno de Pesquisa, 16(2), 44-48.

20. Gong, R., Jin, Y., Chen, F., Chen, J., & Zhili, L. (2006). Enhanced malachite green removal from aqueous solution by citric acid modified rice straw. Journal of Hazardous Materials, 137(2), 865-870. PMid:16621265. http://dx.doi.org/10.1016/j.jhazmat.2006.03.010.

21. Rodrigues, N. F. M., Santana, S. A. A., Bezerra, C. W. B., Silva, H. A. S., Melo, J. C. P., Vieira, A. P., Airoldi, C., & Silva, E. C., Fo., (2013). New chemical organic anhydride immobilization process used on banana pseudostems: a biopolymer for cation removal. Journal of Industrial and Engineering Chemistry, 52(32), 11007-11015. http://dx.doi.org/10.1021/ie303409b.

22. Della, V. P., Kuhn, I., & Hotza, D. (2001). Caracterização de cinza de casca de arroz para uso como matéria-prima na fabricação de refratários de sílica. Quimica Nova, 24(6), 778-782. http://dx.doi.org/10.1590/S0100-40422001000600013.

23. Della, V. P., Kuhn, I., & Hotza, D. (2006). Estudo comparativo entre sílica obtida por lixívia ácida da casca de arroz e sílica obtida por tratamento térmico da cinza de casca de arroz. Quimica Nova, 29(6), 1175-1179. http://dx.doi.org/10.1590/S0100-40422006000600005.

24. Dyominov, I. G., & Zadorozhny, A. M. (2005). Greenhouse gases and recovery of the Earth’s ozone layer. Advances in Space Research, 35(8), 1369-1374. http://dx.doi.org/10.1016/j.asr.2005.04.090.

25. Ponnusami, V., Krithika, V., Madhuram, R., & Srivastava, S. N. (2007). Biosorption of reactive dye using acid-treated rice husk:Factorial design analysis. Journal of Hazardous Materials, 142(1-2), 397-403. PMid:17011118. http://dx.doi.org/10.1016/j.jhazmat.2006.08.040.

26. Chiou, M. S., Ho, P. Y., & Li, H. Y. (2004). Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes and Pigments, 60(1), 69-84. http://dx.doi.org/10.1016/S0143-7208(03)00140-2.

27. Yuen, C. W. M., Ku, S. K. A., Choi, P. S. R., Kan, C. W., & Tsang, S. Y. (2005). Determining functional groups of commercially available ink-jet printing reactive dyes using infrared spectroscopy. Research Journal of Textile and Apparel, 9, 26-38.

28. Aboudan, M., & Kassab, R. (2015). Synthesis of new azo dyes derived from 2,7-dihydroxynaphthalene. International Journal of Academic Scientific Research, 3, 143-149.

29. Noda, I. (1993). Generalized two-dimensional correlation method applicable to infrared, raman, and other types of spectroscopy. Applied Spectroscopy, 47(9), 1329-1336. http://dx.doi.org/10.1366/0003702934067694.

30. Gupta, V. K., Pathania, D., Sharma, S., Agarwal, S., & Singh, P. (2013). Remediation of noxious chromium (VI) utilizing acrylic acid grafted lignocellulosic adsorbent. Journal of Molecular Liquids, 177, 343-352. http://dx.doi.org/10.1016/j.molliq.2012.10.017.

31. Kamath, S. R., & Proctor, A. (1998). Sílica gel from rice hull ash: preparation and characterization. Cereal Chemistry, 75(4), 484-487. http://dx.doi.org/10.1094/CCHEM.1998.75.4.484.

32. Tserki, V., Matzinos, P., Kokkou, S., & Panayiotou, C. (2005). Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterization of waste flour. Composites. Part A, Applied Science and Manufacturing, 36(7), 965-974. http://dx.doi.org/10.1016/j.compositesa.2004.11.010.

33. Fras, L., Johansson, L. S., Stenius, P., Laine, J., Stana-Kleinschek, K., & Ribitsch, V. (2005). Analysis of the oxidation of cellulose fibres by titration and XPS. Colloids and Surfaces, 260(1-3), 101-108. http://dx.doi.org/10.1016/j.colsurfa.2005.01.035.

34. Smits, J., & Grieken, R. V. (1981). Enrichment of trace anions from water with 2,2′-diaminodiethylamine cellulose filters. Analytica Chimica Acta, 123, 9-17. http://dx.doi.org/10.1016/S0003-2670(01)83152-4.

35. Liu, C. F., Sun, R. C., Zhang, A. P., & Ren, J. L. (2007). Preparation of sugarcane bagasse cellulosic phthalate using an ionic liquid as reaction medium. Carbohydrate Polymers, 68(1), 17-25. http://dx.doi.org/10.1016/j.carbpol.2006.07.002.

36. Chang, S. T., & Chang, H. T. (2001). Comparisons of the photostability of esterified wood. Polymer Degradation & Stability, 71(2), 261-266. http://dx.doi.org/10.1016/S0141-3910(00)00171-3.

37. Tarley, C. R. T., & Arruda, M. A. Z. (2004). Biosorption of heavy metals using rice milling byproducts. Characterization and application for removal of metals from aqueous effluents. Chemosphere, 54(7), 987-995. PMid:14637356. http://dx.doi.org/10.1016/j.chemosphere.2003.09.001.

38. Han, R., Zhang, L., Song, C., Zhang, M., Zhu, H., & Zhang, L. J. (2010). Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode. Carbohydrate Polymers, 79(4), 1140-1149. http://dx.doi.org/10.1016/j.carbpol.2009.10.054.

39. Holanda, C. A., Sousa, J. L., Santos, C. C., Santos, H. A. S., Santana, S. A. A., Costa, M. C. P., Schultz, M. S., & Bezerra, C. W. B. (2015). Remoção Do Corante Têxtil Turquesa De Remazol Empregando Aguapé (Eichhornia Crassipes) Como Adsorvente. Electronic Journal of Chemistry, 7(2), 141-154.

40. Vieira, A. P., Santana, S. A. A., Bezerra, C. W. B., Silva, H. A. S. S., Chaves, J. A. P., Melo, J. C. P., Silva, E. C., Fo., & Airoldi, C. (2011). Removal of textile dyes from aqueous solution by babassu coconut epicarp (Orbignya speciosa). Chemical Engineering Journal, 173(2), 334-340. http://dx.doi.org/10.1016/j.cej.2011.07.043.

41. Janos, P., Coskun, S., Pilarová, V., & Rejnek, J. (2009). Removal of basic (Methylene Blue) and acid (Egacid Orange) dyes from waters by sorption on chemically treated wood shavings. Bioresource Technology, 100(3), 1450-1453. PMid:18848777. http://dx.doi.org/10.1016/j.biortech.2008.06.069.

42. Vieira, A. P., Santana, S. A. A., Bezerra, C. W. B., Silva, H. A. S. S., Chaves, J. A. P., Melo, J. C. P., Silva, E. C., Fo., & Airoldi, C. (2011). Epicarp and Mesocarp of Babassu (Orbignya speciosa): Characterization and Application in Copper Phtalocyanine Dye Removal. Journal of the Brazilian Chemical Society, 22(1), 21-29. http://dx.doi.org/10.1590/S0103-50532011000100003.

43. Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Handlingar, 24, 1-39.

44. Ho, Y., & McKay, G. (1998). The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Canadian Society for Chemical Engineering, 76(4), 822-827. http://dx.doi.org/10.1002/cjce.5450760419.

45. Peers, A. M. (1965). Elovich adsorption kinetics and the heterogeneous surface. Journal of Catalysis, 4(4), 499-503. http://dx.doi.org/10.1016/0021-9517(65)90054-0.

46. Tunç, O., Tanaci, H., & Aksu, Z. (2009). Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye. Journal of Hazardous Materials, 163(1), 187-198. PMid:18675510. http://dx.doi.org/10.1016/j.jhazmat.2008.06.078.

47. Ai, L., Zhang, C., & Meng, L. (2011). Adsorption of Methyl Orange from Aqueous Solution on Hydrothermal Synthesized Mg-Al Layered Double Hydroxide. Journal of Chemical & Engineering Data, 56(11), 4217-4225. http://dx.doi.org/10.1021/je200743u.

48. Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 385-470.

49. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361-1403. http://dx.doi.org/10.1021/ja02242a004.

50. Temkin, M. I. (1972). Theoretical models of the kinetics of heterogeneous catalytic reactions. Kinetics and Catalysis, 13, 555-565. http://dx.doi.org/10.1021/cr00035a010.

51. Achak, M., Hafidi, A., Ouazzani, N., Sayadi, S., & Mandi, L. (2009). Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: Kinetic and equilibrium studies. Journal of Hazardous Materials, 166(1), 117-125. PMid:19144464. http://dx.doi.org/10.1016/j.jhazmat.2008.11.036.

52. Namasivayam, C., Kumar, M. D., Selvi, K., Begum, R. A., Vanathi, T., & Yamuna, R. T. (2001). Waste coir pith-a potential biomass for the treatment of dyeing wastewaters. Biomass and Bioenergy, 21(6), 477-483. http://dx.doi.org/10.1016/S0961-9534(01)00052-6.

53. Saeed, A., Sharif, M., & Iqbal, M. (2010). Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption. Journal of Hazardous Materials, 179(1-3), 564-572. PMid:20381962. http://dx.doi.org/10.1016/j.jhazmat.2010.03.041.

54. Wang, L., & Li, J. (2013). Adsorption of C.I. Reactive Red 228 dye from aqueous solution by modified cellulose from flax shive: Kinetics, equilibrium, and thermodynamics. Industrial Crops and Products, 42, 153-158. http://dx.doi.org/10.1016/j.indcrop.2012.05.031.

55. Bekçi, Z., Seki, Y., & Cavas, L. (2009). Removal of malachite green by using an invasive marine alga Caulerpa racemosa var. Cylindracea. Journal of Hazardous Materials, 161(2-3), 1454-1460. PMid:18562093. http://dx.doi.org/10.1016/j.jhazmat.2008.04.125.

56. Alkan, M., Demirbas, O., Celikcapa, S., & Dogan, M. (2004). Sorption of acid red 57 from aqueous solution onto sepiolite. Journal of Hazardous Materials, 116(1-2), 135-145. PMid:15561372. http://dx.doi.org/10.1016/j.jhazmat.2004.08.003.

57. Zhou, Y. T., Nie, C. B.-W., & Zhu, J. C. (2009). Adsorption mechanism of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. Colloids and Surfaces. B, Biointerfaces, 74(1), 244-252. PMid:19683900. http://dx.doi.org/10.1016/j.colsurfb.2009.07.026.

58. Dabrowski, A. (2001). Adsorption - from theory to practice. Advances in Colloid and Interface Science, 93(1-3), 135-224. PMid:11591108. http://dx.doi.org/10.1016/S0001-8686(00)00082-8.

59. Silverstein, R. M., Bassler, G. C., & Morrill, T. C. (1991). Spectrometric identification of organic compounds. New York: John Wiley & Sons.

60. Chatterjee, S., Chatterjee, B. P., & Guha, A. K. (2007). Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: Binding mechanism, equilibrium and kinetics. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 299(1-3), 146-152. http://dx.doi.org/10.1016/j.colsurfa.2006.11.036.

5b7b00040e88257340896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections