Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2355
Polímeros: Ciência e Tecnologia
Original Article

Fractographic and rheological characterizations of CF/PP-PE-copolymer composites tested in tensile

Cirilo, Paula Helena da Silva; Nogueira, Clara Leal; Paiva, Jane Maria Faulstich de; Guerrini, Lilia Müller; Cândido, Geraldo Maurício; Rezende, Mirabel Cerqueira

Downloads: 0
Views: 224

Abstract

This work shows the fractographic study of fractured surfaces resulted from tensile tests of thermoplastic composites based on poly(propylene-co-ethylene) (PP-PE) and modified PP-PE copolymers reinforced with continuous carbon fibers (CF). The PP-PE matrix was modified with two agents called AM1 (based on maleic anhydride) and AM2 (containing an elastomeric agent), respectively. Three different laminates - CF/PP-PE, CF/PP-PE(AM1) and CF/PP-PE(AM2) - were manufactured. The best tensile strength and elastic modulus results were determined for the CF/PP-PE(AM1) laminate (507.6 ± 11.8 MPa and 54.7 ± 2.4 GPa, respectively). These results show that the AM1 agent contributed to increase the physicochemical interaction between the CF and the PP-PE matrix. This condition provided a better loading transfer from matrix to the reinforcement. Scanning electron microscopy analyses of the fracture surfaces show the fractographic aspects of the samples and allow evaluating the fiber/matrix-interfacial adhesion. Poor adhesion is observed for the CF/PP-PE and CF/PP-PE(AM2) laminates with the presence of fiber impressions on the polymer rich regions and fiber surfaces totally unprotected of polymer matrix. On the other side, a more consistent adhesion is observed for the CF/PP-PE(AM1) laminate. This result is in agreement with the tensile test data and show the presence of a good interaction between the laminate constituents. The correlation of the mechanical and fractographic results with the curves of complex viscosity versus temperature of the studied polymer matrices shows that the matrix viscosity did not affect the wettability of the reinforcement.

Keywords

fractography, thermoplastic composite, carbon fiber, PP-PE.

References

1. Feraboli, P., & Masini, A. (2004). Development of carbon/epoxy structural components for a high performance vehicle. Composites. Part B, Engineering, 35(4), 323-330. http://dx.doi.org/10.1016/j.compositesb.2003.11.010.

2. Edwards, K. L. (2004). Exploiting new materials and processes for higher productivity: use of advanced composite technologies. Materials & Design, 25(7), 565-571. http://dx.doi.org/10.1016/j.matdes.2004.02.016.

3. Soutis, C. (2005). Fiber reinforced composites in aircraft construction. Progress in Aerospace Sciences, 41(2), 143-151. http://dx.doi.org/10.1016/j.paerosci.2005.02.004.

4. Roeseler, W. G., Sarh, B., & Kismarton, M. U. (2007). Composite structures: the first 100 years. In Proceedings of the ICCM-16 Sixteenth International Conference on Composite Materials (pp. 1-10). Kyoto: ICCM.

5. Savage, G. (2010). Formula 1 composites engineering. Engineering Failure Analysis, 17(1), 92-115. http://dx.doi.org/10.1016/j.engfailanal.2009.04.014.

6. Mrzova, M. (2013). Advanced composite materials of the future in aerospace industry. Incas Bulletin, 5(3), 139-150. http://dx.doi.org/10.13111/2066-8201.2013.5.3.14.

7. Friedrich, K., & Almajid, A. A. (2013). Manufacturing aspects of advanced polymer composites for automotive applications. Applied Composite Materials, 20(2), 107-128. http://dx.doi.org/10.1007/s10443-012-9258-7.

8. Ren, Y., Xiang, J., & Zheng, J. (2015). The crashworthiness design of transport aircraft using composite structure. In Proceedings of the 20th International Conference on Composite Materials. Copenhagen: ICCM.

9. Kako, J. C., & Roth, Y. C. (2015). Applications and challenges of prepreg forming technologies in aircraft industry. In Proceedings of the 20th International Conference on Composite Materials. Copenhagen: ICCM.

10. Martensson, P., Zenkert, D., & Akermo, M. (2015). The effects of cost and weight efficient structural design for manufacturing of composite automotive body structures. In Proceedings of the 20th International Conference on Composite Materials. Copenhagen: ICCM.

11. Luinge, J. W. (2015). Thermoplastic composites: material developments for aerospace applications, incorporation of a functional tie layer. In Proceedings of the 20th International Conference on Composite Materials. Copenhagen: ICCM.

12. Nakai, A., Uozumi, T., Ohtani, A., Kanamori, T., & Nagoh, S. (2015). High-cycle molding of continuous fiber reinforced thermoplastic composite pipe. In Proceedings of the 20th International Conference on Composite Materials. Copenhagen.

13. Arhant, M., Davies, P., Burtin, C., & Briançon, C. (2015). Thermoplastic matrix composites for underwater applications. In Proceedings of the 20th International Conference on Composite Materials. Copenhagen: ICCM.

14. Nogueira, C. L., Marlet, J. M. F., & Rezende, M. C. (1999). Processo de obtenção de pré-impregnados poliméricos termoplásticos via moldagem por compressão a quente. Polímeros: Ciência e Tecnologia, 9(3), 18-27. http://dx.doi.org/10.1590/S0104-14281999000300006.

15. Novo, P. J., Silva, J. F., Nunes, J. P., & Marques, A. T. (2015). Advances in thermoplastic pultruded composites. In Proceedings of the 20th International Conference on Composite Materials. Copenhagen: ICCM.

16. Schäfer, J., Gries, T., Schuster, R., & Lammel, C. (2015). Continuous production of fibre reinforced thermoplastic composites by braiding pultrusion. In Proceedings of the 20th International Conference on Composite Materials. Copenhagen: ICCM.

17. Hoang, M. D., Simpson, J. F., & Hoa, S. V. (2015). Mechanical properties of thermoplastic composites made by automated fiber placement. In Proceedings of the 20th International Conference on Composite Materials. Copenhagen: ICCM.

18. Rodríguez-Lence, F., Zuazo, M., & Calvo, S. (2015). In-situ consolidation of PEEK composites by automated placement technologies. In Proceedings of the 20th International Conference on Composite Materials. Copenhagen: ICCM.

19. Fernández, I., Blas, F., & Frövel, M. (2003). Autoclave forming of thermoplastic composite parts. Journal of Materials Processing Technology, 143-144, 266-269. http://dx.doi.org/10.1016/S0924-0136(03)00309-1.

20. Marques, L. S., Narita, N. E., Costa, G. C., & Rezende, M. C. (2010). Avaliação dos comportamentos mecânico e térmico de laminados de PPS/fibra de carbono processados em autoclave sob diferentes ciclos de consolidação. Polímeros: Ciência e Tecnologia, 20(4), 309-314. http://dx.doi.org/10.1590/S0104-14282010005000043.

21. Stavrov, D., & Bersee, H. E. N. (2005). Resistance welding of thermoplastic composites-an overview. Composites. Part A, Applied Science and Manufacturing, 36(1), 39-54. http://dx.doi.org/10.1016/S1359-835X(04)00182-4.

22. Ahmed, T. J., Stavrov, D., Bersee, H. E. N., & Beukers, A. (2006). Induction welding of thermoplastic composites-an overview. Composites. Part A, Applied Science and Manufacturing, 37(10), 1638-1651. http://dx.doi.org/10.1016/j.compositesa.2005.10.009.

23. Dubé, M., Hubert, P., Yousefpour, A., & Denault, J. (2007). Resistence welding of thermoplastic composites skin/stringer joints. Composites. Part A, Applied Science and Manufacturing, 38(12), 2541-2552. http://dx.doi.org/10.1016/j.compositesa.2007.07.014.

24. Costa, A. P., Botelho, E. C., Costa, M. L., Narita, N. E., & Tarpani, J. R. (2012). A review of welding technologies for thermoplastic composites in aerospace applications. Journal of Aerospace Technology and Management, 4(3), 255-265. http://dx.doi.org/10.5028/jatm.2012.040303912.

25. Villegas, I. F. (2014). Strength development versus process data in ultrasonic welding of thermoplastic composites with flat energy directors and its application to the definition of optimum processing parameters. Composites. Part A, Applied Science and Manufacturing, 65, 27-37. http://dx.doi.org/10.1016/j.compositesa.2014.05.019.

26. Almeida, S. F. M., & Nogueira, Z. S., No. (1994). Effect of void content on the strength of composite laminates. Composite Structures, 28(2), 139-148. http://dx.doi.org/10.1016/0263-8223(94)90044-2.

27. Zhu, H., Wu, B., Li, D., Zhang, D., & Chen, Y. (2011). Influence of voids on the tensile performance of carbon/epoxy fabric laminates. Journal of Materials Science and Technology, 27(1), 69-73. http://dx.doi.org/10.1016/S1005-0302(11)60028-5.

28. Scott, A. E., Sinclair, I., Spearing, S. M., Mavrogordato, M. N., & Hepples, W. (2014). Influence of voids on damage mechanisms in carbon/epoxy composites determined via high resolution computed tomography. Composites Science and Technology, 90, 147-153. http://dx.doi.org/10.1016/j.compscitech.2013.11.004.

29. Liebig, W. V., Viets, C., Schulte, K., & Fiedler, B. (2015). Influence of voids on the compressive failure behaviour of fibrereinforced composites. Composites Science and Technology, 117, 225-233. http://dx.doi.org/10.1016/j.compscitech.2015.06.020.

30. Matadi Boumbimba, R., Froustey, C., Viot, P., & Gerard, P. (2015). Low velocity impact response and damage of laminate composite glass fibre/epoxy based tri-block copolymer. Composites. Part B, Engineering, 76, 332-342. http://dx.doi.org/10.1016/j.compositesb.2015.02.007.

31. Liang, Y., Wang, H., Soutis, C., Lowe, T., & Cernik, R. (2015). Progressive damage in satin weave carbon/epoxy composites under quasi-static punch-shear loading. Polymer Testing, 41, 82-91. http://dx.doi.org/10.1016/j.polymertesting.2014.10.013.

32. Costa, M. L., Rezende, M. C., & Almeida, S. F. M. (2005). Strength of hygrothermally conditioned polymer composites with voids. Journal of Composite Materials, 39(21), 1943-1961. http://dx.doi.org/10.1177/0021998305051807.

33. Mouzakis, D. E., Zoga, H., & Galiotis, C. (2008). Accelerated environmental ageing study of polyester/glass fiber reinforced composites (GFRPCs). Composites. Part B, Engineering, 39(3), 467-475. http://dx.doi.org/10.1016/j.compositesb.2006.10.004.

34. Zhong, Y., & Joshi, S. C. (2015). Impact behavior and damage characteristics of hygrothermally conditioned carbon epoxy composite laminates. Materials & Design, 65, 254-264. http://dx.doi.org/10.1016/j.matdes.2014.09.030.

35. Sethi, S., & Ray, B. C. (2015). Environmental effects on fibre reinforced polymeric composites: evolving reasons and remarks on interfacial strength and stability. Advances in Colloid and Interface Science, 217, 43-67. PMid:25578406. http://dx.doi.org/10.1016/j.cis.2014.12.005.

36. Purslow, D. (1981). Some fundamental aspects of composites fractography. Composites, 12(4), 241-247. http://dx.doi.org/10.1016/0010-4361(81)90012-4.

37. Purslow, D. (1984). Composites fractography without an SEM - the failure analysis of a CRFP I-beam. Composites, 15(1), 43-48. http://dx.doi.org/10.1016/0010-4361(84)90960-1.

38. Purslow, D. (1986). Matrix fractography of fibre-reinforced epoxy composites. Composites, 17(4), 289-303. http://dx.doi.org/10.1016/0010-4361(86)90746-9.

39. Purslow, D. (1987). Matrix fractography of fibre-reinforced thermoplastics, Part 1. Peel failures. Composites, 18(5), 365-374. http://dx.doi.org/10.1016/0010-4361(87)90360-0.

40. Purslow, D. (1988). Matrix fractography of fibre-reinforced thermoplastics, Part 2. Shear failures. Composites, 19(2), 115-125. http://dx.doi.org/10.1016/0010-4361(88)90721-5.

41. Purslow, D. (1988). Matrix fractography of fibre-reinforced thermoplastics, Part 3. Tensile, compressive and flexure failures. Composites, 19(5), 358-366. http://dx.doi.org/10.1016/0010-4361(88)90123-1.

42. Roulin-Moloney, A. C. (1989). Fractography and failure mechanisms of polymers and composites. England: Elsevier Science Publishers.

43. Miracle, D. B., & Donaldson, S. (2001). ASM Handbook: composites (Vol. 21). Materials Park: ASM International.

44. Greenhalgh, E. (2009). Failure analysis and fractography of polymer composites. Cambridge: Woodhead Publishing Limited.

45. Rezende, M. C. (2007). Fractografia de compósitos estruturais. Polímeros: Ciência e Tecnologia, 17(3), E4-E11. http://dx.doi.org/10.1590/S0104-14282007000300003.

46. Franco, L. A. L., Graça, M. L. A., & Silva, F. S. (2008). Fractography analysis and fatigue of thermoplastic composite laminates at different environmental conditions. Materials Science and Engineering A, 488(1-2), 505-513. http://dx.doi.org/10.1016/j.msea.2007.11.053.

47. Bonhomme, J., Argüelles, A., Vinã, J., & Vinã, I. (2009). Fractography and failure mechanisms in static mode I and mode II delamination testing of unidirectional carbon reinforced composites. Polymer Testing, 28(6), 612-617. http://dx.doi.org/10.1016/j.polymertesting.2009.05.003.

48. Vinod, M. S., Sunil, B. J., Nayaka, V., Shenoy, R., Murali, M. S., & Nafidi, A. (2010). Fractography of compression failed carbon fiber reinforced plastic composite laminates. Journal of Mechanical Engineering Research, 2(1), 1-9. Retrieved in 18 August 2015, from http://www.academicjournals.org/article/article1379601327_Vinod%20et%20al.pdf.

49. Kumar, M. S., Raghavendra, K., Venkataswamy, M. A., & Ramachandra, H. V. (2012). Fractographic analysis of tensile failures of aerospace grade composites. Materials Research, 15(6), 990-997. http://dx.doi.org/10.1590/S1516-14392012005000141.

50. Cândido, G. M., Donadon, M. V., Almeida, S. F. M., & Rezende, M. C. (2012). Fractografia de compósito estrutural aeronáutico submetido à caracterização de tenacidade à fratura interlaminar em modo I. Polímeros: Ciência e Tecnologia, 22(1), 41-53. http://dx.doi.org/10.1590/S0104-14282012005000019.

51. Cândido, G. M., Fernandes, J. C., & Rezende, M. C. (2013). Análise fractográfica de defeitos identificados na morfologia de fratura de compósitos poliméricos de fibras contínuas. In Anais do 12º Congresso Brasileiro de Polímeros (12º CBPol). Florianópolis: CBPOL.

52. Cândido, G. M., Mazur, R. L., Botelho, E. C., & Rezende, M. C. (2013). Estudo fractográfico do compósito termoplástico de carbono/PEKK ensaiado de carregamento de tração. In Anais do 12º Congresso Brasileiro de Polímeros (12º CBPol). Florianópolis: CBPOL.

53. Cândido, G. M., Donadon, M. V., Almeida, S. F. M., & Rezende, M. C. (2014). Fractografia de compósito estrutural aeronáutico submetido ao ensaio de tenacidade à fratura interlaminar em modo II. Polímeros: Ciência e Tecnologia, 24(1), 65-71. http://dx.doi.org/10.4322/polimeros.2013.008.

54. UL Prospector. (2015). Retrieved in 18 August 2015, from http://plastics.ulprospector.com/pt/datasheet/e30953/engage-8180

55. Maurano, C. H. F., Galland, G. B., & Mauler, R. S. (1998). Influência da estrutura de diferentes copolímeros de etileno e a-olefinas na funcionalização com anidrido maleico. Polímeros: Ciência e Tecnologia, 8(3), 79-88. http://dx.doi.org/10.1590/S0104-14281998000300011.

56. Levy, F., No., & Pardini, L. C. (2006). Reforços para compósitos. In F. Levy No., & Pardini, L. C. Compósitos estruturais: ciência e tecnologia (pp. 59-106). São Paulo: Edgard Bücher.

57. Marinucci, G. (2011). Fibras. In G. Marinucci Materiais compósitos poliméricos: fundamentos e tecnologia (pp. 63-78). São Paulo: Artliber.

58. Lu, B., & Chung, T. C. (2000). Synthesis of maleic anhydride grafted polyethylene and polypropylene, with controlled molecular structures. Journal of Polymer Science. Part A, Polymer Chemistry, 38(8), 1337-1343. http://dx.doi.org/10.1002/(SICI)1099-0518(20000415)38:8<1337::AID-POLA18>3.0.CO;2-8.

5b7b0b8a0e8825854e896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections