Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Effect of shrimp shells milling on the molar mass of chitosan

Alves, Helton José; Furman, Maristela; Kugelmeier, Cristie Luis; Oliveira, Clayton Rodrigues de; Bach, Vanessa Rossato; Lupatini, Karine Natani; Neves, Andressa Caroline; Arantes, Mabel Karina

Downloads: 1
Views: 953


Shrimp shells are a raw material rich in chitin, a precursor of chitosan biopolymer. The variables of processing (demineralization, deproteination and deacetylation) can be manipulated to determine the main characteristics of chitosan, the degree of deacetylation (DD), and average molar mass. This study evaluated the influence of one of the unit operations of shrimp shell physical processing, the milling, on the final product characteristic, chitosan. After different milling conditions, the raw material was subjected to standard chemical processing for chitin extraction, followed by deacetylation to obtain chitosan, which is characterized by 1H NMR, SEM, XRD, N2 physisorption (BET) and viscometry. The results indicated that the milling time of the raw material can be manipulated to increase the material depolymerization, significantly influencing the molecular weight reduction of chitosan a desirable feature for many applications of this biopolymer, and usually obtained by complex chemical and enzymatic methods.


biopolymers, chitosan, degree of polymerization (DP), viscosity, particle size distribution.


1. Arantes, M. K., Kugelmeier, C. L., Cardozo-Filho, L., Monteiro, M. R., Oliveira, C. R., & Alves, H. J. (2015). Influence of the drying route on the depolymerization and properties of chitosan. Polymer Engineering and Science, 55(9), 1969-1976. http://dx.doi.org/10.1002/pen.24038.

2. Ma, Z., Wang, W., Wu, Y., He, Y., & Wu, T. (2014). Oxidative degradation of chitosan to the low molecular water-soluble chitosan over peroxotungstate as chemical scissors. PLoS One, 9(6), e100743. PMid:24971631. http://dx.doi.org/10.1371/journal.pone.0100743.

3. Pornsunthorntawee, O., Katepetch, C., Vanichvattanadecha, C., Saito, N., & Rujiravanit, R. (2014). Depolymerization of chitosan-metal complexes via a solution plasma technique. Carbohydrate Polymers, 102, 504-512. PMid:24507312. http://dx.doi.org/10.1016/j.carbpol.2013.11.025.

4. Jung, J., & Zhao, Y. (2011). Characteristics of deacetylation and depolymerization of ß-chitin from jumbo squid (Dosidicus gigas) pens. Carbohydrate Research, 346(13), 1876-1884. PMid:21700271. http://dx.doi.org/10.1016/j.carres.2011.05.021.

5. Yue, W., Yao, P., & Wei, Y. (2009). Influence of ultraviotel-irradiated oxygen on depolymerization of chitosan. Polymer Degradation & Stability, 94(5), 851-858. http://dx.doi.org/10.1016/j.polymdegradstab.2009.01.023.

6. Yue, W. (2014). Prevention of browning of depolymerized chitosan obtained by gamma irradiation. Carbohydrate Polymers, 101, 857-863. PMid:24299848. http://dx.doi.org/10.1016/j.carbpol.2013.10.011.

7. Dziril, M., Grib, H., Laribi-Habchi, H., Drouiche, N., Abdi, A., Lounici, H., Pauss, A., & Mameri, N. (2015). Chitin oligomers and monomers production by coupling g radiation and enzymatic hydrolysis. Journal of Industrial and Engineering Chemistry, 26, 396-401. http://dx.doi.org/10.1016/j.jiec.2014.12.015.

8. Einbu, A., & Varum, K. M. (2007). Depolymerization and de-N-acetylation of chitin oligomers in hydrochloric acid. Biomacromolecules, 8(1), 309-314. PMid:17206822. http://dx.doi.org/10.1021/bm0608535.

9. Brostow, W., & Corneliussen, R. D. (1986). Kinetics of milling of polymers. Materials Chemistry and Physics, 14(1), 1-8. http://dx.doi.org/10.1016/0254-0584(86)90013-1.

10. Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2010). A new model for the kinetic analysis of thermal degradation of polymers driven random scission. Polymer Degradation & Stability, 95(5), 733-739. http://dx.doi.org/10.1016/j.polymdegradstab.2010.02.017.

11. Bressy, C., Ngo, V. G., & Margaillan, A. (2013). A first insight into the thermal degradation mechanism of silylated methacrylic homopolymers synthesized via the RAFT process. Polymer Degradation & Stability, 98(1), 115-121. http://dx.doi.org/10.1016/j.polymdegradstab.2012.10.023.

12. Loh, Z. H., Samanta, A. K., & Sia Heng, P. W. (2015). Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian Journal of Pharmaceutical Sciences, 10(4), 255-274. http://dx.doi.org/10.1016/j.ajps.2014.12.006.

13. Cook, R., & Mercer, M. B. (1985). Dynamic overstresses in fibrous polymeric materials. Materials Chemistry and Physics, 12(6), 571-580. http://dx.doi.org/10.1016/0254-0584(85)90043-4.

14. Delezuk, J. A. M., Cardoso, M. B., Domard, A., & Campana-Filho, S. P. (2011). Ultrasound-assisted deacetylation of beta-chitin: influence of processing parameters. Polymer International, 60(6), 903-909. http://dx.doi.org/10.1002/pi.3037.

15. Delezuk, J. A. M. (2013). Chitosan production with controlled characteristics using high intensity ultrasound irradiation [Doctoral thesis]. University of São Paulo, São Carlos.

16. Kasaai, M. R. (2007). Calculation of Mark-Houwink-Sakurada (MHS) equation viscometric constants for chitosan in any solvent-temperature system using experimental reported viscosimetric constants data. Carbohydrate Polymers, 68(3), 477-488. http://dx.doi.org/10.1016/j.carbpol.2006.11.006.

17. Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309-319. http://dx.doi.org/10.1021/ja01269a023.

18. Boz, N., Degirmenbasi, N., & Kalyon, D. M. (2009). Conversion of biomass to fuel: transesterification of vegetable oil to biodiesel using KF loaded nano-g-Al2O3 as catalyst. Applied Catalysis B: Environmental, 89(3-4), 590-596. http://dx.doi.org/10.1016/j.apcatb.2009.01.026.

19. Muzzarelli, A. A. (1985). Chitin. In H. F. Mark, N. M. Bikales, C. G. Overberger & G. Menges (Eds.). Encyclopedia of polymers science engineering. New York: John Wiley. 430 p.

20. Santos, J. E., Soares, J. P., Dockal, E. R., & Campana-Filho, S. (2003). Caracterização de quitosanas comercias de diferentes origens. Polímeros: Ciência e Tecnologia, 13(4), 242-249. http://dx.doi.org/10.1590/S0104-14282003000400009.

21. Perrin-Sarazin, F., Sepehr, M., Bouaricha, S., & Denault, J. (2009). Potential of ball milling to improve clay dispersion in nanocomposites. Polymer Engineering and Science, 49(4), 651-665. http://dx.doi.org/10.1002/pen.21295.

5b7afeed0e8825d23e896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections