Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2352
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Rheological properties and curing features of natural rubber compositions filled with fluoromica ME 100

Honorato, Luciana; Dias, Marcos Lopes; Azuma, Chiaki; Nunes, Regina Célia Reis

Downloads: 2
Views: 1229

Abstract

This work aims at studying not only the rheological behavior of natural rubber-based compositions by making use of different contents of fluoromica or ME 100 synthetic mica in a natural rubber (NR) matrix, but also the different filler-filler and matrix-filler interactions before and after curing. The ME 100 content in NR varied from 0 to 10 phr (parts per hundred parts of resin) and the results enabled to conclude on the influence of the mineral filler on the curing parameters, as well as on the limit amount of ME 100 for the best performance resulting from the best filler distribution/interaction in the polymer matrix. All data were compared with those of the unfilled composition. Based on complex viscosity, curing parameters, dynamic modulus and Payne effect tests it was concluded that the mica content limit for the best performance was 7 phr.

Keywords

rheology, natural rubber, synthetic mica, fluoromica.

References

1. Kohjiya, S. (2015). Natural rubber: from the odyssey of the hevea tree to the age of transportation. Shawabury: Smithers Rapra.

2. Roberts, A. D. (1988). Natural rubber science and technology. Oxford: Oxford University Press.

3. Wang, Z., Lwo, W., Fang, L., Liao, S., Li, L., Lin, H., Li, S., & He, C. (2014). Rheological behavior of raw natural rubber coagulated by microorganisms. Polímeros: Ciência e Tecnologia, 24(2), 143-148.

4. Martins, A. F., Visconte, L. L. Y., & Nunes, R. C. R. (2002). Propriedades reológicas e dinâmicas de composições não-vulcanizadas de borracha natural com celulose regenerada. Polímeros: Ciência e Tecnologia, 12(4), 295-300.

5. Kohjiya, S., & Ikeda, Y. (2014). Chemistry, manufacture and applications of natural rubber. Oxford: Woodhead Publishing.

6. Nunes, R. C. R. (2014). Natural rubber (NR) composites using cellulosic fiber reinforcements. In S. Kohjiya & Y. Ikeda (Eds.), Chemistry, manufacture and applications of natural rubber (pp. 284-302). Oxford: Woodhead Publishing. http://dx.doi.org/10.1533/9780857096913.2.284

7. Galimberti, M., Cipolletti, V., Musto, S., Cioppa, S., Peli, G., Mauro, M., Gaetano, G., Agnelli, S., Theonis, R., & Kumar, V. (2014). Recent advancements in rubber nanocomposites. Rubber Chemistry and Technology, 87(3), 417-442. http://dx.doi.org/10.5254/rct.14.86919.

8. Bhattacharya, M., & Bhowmick, A. K. (2010). Correlation of vulcanization and viscoelastic properties of nanocomposites based on natural rubber and different nanofillers, with molecular and supramolecular structure. Rubber Chemistry and Technology, 83(1), 16-34. http://dx.doi.org/10.5254/1.3548263.

9. Mariano, R. M., Nunes, R. C. R., Visconte, L. L. Y., & Altstaedt, V. (2013). Efeito da hibridização de montmorilonita e celulose II sobre as propriedades mecânicas de nanocompósitos de borracha natural. Polímeros: Ciência e Tecnologia, 23(1), 123-127.

10. Escócio, V. A., Martins, A. F., Visconte, L. L. Y., Nunes, R. C. R., & Costa, D. M. R. (2003). Influência da mica nas propriedades mecânicas e dinâmico-mecânicas de composições de borracha natural. Polímeros: Ciência e Tecnologia, 13(2), 130-134.

11. Souza, D. H. S., Dahmouche, S., Andrade, C. T., & Dias, M. L. (2011). Structure, morphology and thermal stability of synthetic fluorine mica and its organic derivatives. Applied Clay Science, 54(3-4), 226-234. http://dx.doi.org/10.1016/j.clay.2011.09.006.

12. Tateyama, H., Tsunematsu, K., Kimura, K., Hirosue, H., Jinnai, K., & Furusawa, T. (1993). Method for producing fluorine mica. US Patent 5204078.

13. Gelfer, M. Y., Burger, C., Nawani, P., Hsiao, B. S., Chu, B., Si, M., Rafailovich, M., Panek, G., Jeschke, G., Fadeev, A. Y., & Gilman, J. W. (2007). Lamellar nanostructure in Somasif-based organoclays. Clays and Clay Minerals, 55(2), 140-150. http://dx.doi.org/10.1346/CCMN.2007.0550203.

14. He, H., Duchet, J., Galy, J., & Gérard, J. F. (2005). Grafting of swelling clay materials with 3-aminopropyltriethoxysilane. Journal of Colloid and Interface Science, 288(1), 171-176. http://dx.doi.org/10.1016/j.jcis.2005.02.092. PMid:15927576.

15. Morrison, N. J., & Porter, M. (1984). Temperature effects on the stability of intermediates and crosslinks in sulfur vulcanization. Rubber Chemistry and Technology, 57(1), 63-85. http://dx.doi.org/10.5254/1.3536002.

16. Cunnen, J. I., & Russell, R. M. (1970). Occurrence and prevention of changes in the chemical structure of natural rubber tire tread vulcanizates during service. Rubber Chemistry and Technology, 43(5), 1215-1224. http://dx.doi.org/10.5254/1.3547319.

17. Dick, J. S., Harmon, C., & Vare, A. (1999). Quality assurance of natural rubber using the rubber process analyzer. Polymer Testing, 18(5), 327-362. http://dx.doi.org/10.1016/S0142-9418(98)00026-9.

18. Leblanc, J. L. (2002). Rubber-filler interactions and rheological properties in filled compounds. Progress in Polymer Science, 27(4), 627-687. http://dx.doi.org/10.1016/S0079-6700(01)00040-5.

19. Yahaya, L. E., Adebowale, K. O., & Olu-Owolabi, B. I. (2014). Cure characteristics and rheological properties of modified kaolin-natural rubber composites. American Chemical Science Journal, 4(4), 472-480. http://dx.doi.org/10.9734/ACSJ/2014/6575.

20. Chen, Y., Zhang, C., Wang, Y., Cheng, S., & Chen, P. (2003). Study of self-crosslinking acrylate latex containing fluorine. Journal of Applied Polymer Science, 90(13), 3609-3616. http://dx.doi.org/10.1002/app.13087.

21. Escócio, V. A. (2006). Híbridos de borracha natural com mica (Master's dissertation). Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Rio de Janeiro.

22. López-Manchado, M. A., Arroyo, M. A., Herrero, M. B., & Biagiotti, J. (2003). Vulcanization kinetics of natural rubber–organoclay nanocomposites. Journal of Applied Polymer Science, 89(1), 1-15. http://dx.doi.org/10.1002/app.12082.

23. Payne, A. R. (1962). The dynamic properties of carbon black loaded natural rubber vulcanizates. Part I. Journal of Applied Polymer Science, 6(19), 57-63. http://dx.doi.org/10.1002/app.1962.070061906.

24. Bezerra, F. O., Nunes, R. C. R., & Ito, E. N. (2013). Efeito Payne em nanocompósitos de NBR com montmorilonita organofílica. Polímeros: Ciência e Tecnologia, 23(2), 223-228.

25. Léopoldès, J., Barrès, C., Leblanc, J. L., & Georget, P. (2004). Influence of filler-rubber interactions on the viscoelastic properties of carbon-black-filled rubber compounds. Journal of Applied Polymer Science, 91(1), 577-588. http://dx.doi.org/10.1002/app.13155.

26. Wu, Y. P., Wang, Y. Q., Zhang, H. F., Wang, Y. Z., Yu, D. S., Zhang, L. Q., & Yang, J. (2005). Rubber-pristine clay nanocomposites prepared by co-coagulating rubber latex and clay aqueous suspension. Composites Science and Technology, 65(7-8), 1195-1202. http://dx.doi.org/10.1016/j.compscitech.2004.11.016.

27. Fröhlich, J., Niedermeier, W., & Luginsland, H. D. (2005). The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Composites. Part A, Applied Science and Manufacturing, 36(4), 449-460. http://dx.doi.org/10.1016/j.compositesa.2004.10.004.

28. Yurekli, K., Krishnamoorti, R., Tse, M. F., McElrath, K. O., Tsou, A. H., & Wang, H. C. (2001). Strucuture and dynamics of carbon black-filled elastomers. Journal of Polymer Science. Part B, Polymer Physics, 39(2), 256-275. http://dx.doi.org/10.1002/1099-0488(20010115)39:2<256::AID-POLB80>3.0.CO;2-Z.

29. Barick, A. K., & Tripathy, D. K. (2011). Effect of organically modified layered silicate nanoclay on the dynamic viscoelastic properties of thermoplastic polyurethane nanocomposites. Applied Clay Science, 52(3), 312-321. http://dx.doi.org/10.1016/j.clay.2011.03.010.
588371da7f8c9d0a0c8b4abb polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections