Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

α-Tocopherol loaded thermosensitive polymer nanoparticles: preparation, in vitro release and antioxidant properties

Quintero, Cirley; Vera, Ricardo; Perez, Leon Dario

Downloads: 0
Views: 729


α-Tocopherol is the most bioavailable and active compound found in vitamin E with potential application in pharmaceutical, alimentary and cosmetic industries. However, its low solubility in aqueous medium and environmental instability limit its dosage. In this paper, we report the preparation of α-tocopherol loaded nanoparticles (TOC-NP) based on amphiphilic thermosensitive triblock copolymers PNIPAM-b-PCL-b-PNIPAM. The nanoparticles exhibited a core – shell structure, were positively charged and presented average diameters below 300 nm. TOC-NP presented controlled release of α-tocopherol at room temperature along 140h, and exhibited antioxidant properties in aqueous medium.


α-tocopherol, polycaprolactone, thermosensitive nanoparticles, triblock copolymer.


1. Bramley, P. M., Elmadfa, I., Kafatos, A., Kelly, F. J., Manios, Y., Roxborough, H. E., Schuch, W., Sheehy, P. J. A., & Wagner, K.-H. (2000). Vitamin E. Journal of the Science of Food and Agriculture, 80(7), 913-938. http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<913::AID-JSFA600>3.0.CO;2-3.

2. Farias, M. C., Moura, M. L., Andrade, L., & Leão, M. H. (2007). Encapsulation of the alpha-tocopherol in a glassy food model matrix. Materials Research, 10(1), 57-62. http://dx.doi.org/10.1590/S1516-14392007000100013.

3. Hategekimana, J., Masamba, K. G., Ma, J., & Zhong, F. (2015). Encapsulation of vitamin E: effect of physicochemical properties of wall material on retention and stability. Carbohydrate Polymers, 124(1), 172-179. PMid:25839808. http://dx.doi.org/10.1016/j.carbpol.2015.01.060.

4. Trombino, S., Cassano, R., Muzzalupo, R., Pingitore, A., Cione, E., & Picci, N. (2009). Stearyl ferulate-based solid lipid nanoparticles for the encapsulation and stabilization of β-carotene and α-tocopherol. Colloids and Surfaces. B, Biointerfaces, 72(2), 181-187. PMid:19410436. http://dx.doi.org/10.1016/j.colsurfb.2009.03.032.

5. Duclairoir, C., Orecchioni, A., Depraetere, P., & Nakache, E. (2002). α-Tocopherol encapsulation and in vitro release from wheat gliadin nanoparticles. Journal of Microencapsulation, 19(1), 53-60. PMid:11811759. http://dx.doi.org/10.1080/02652040110055207.

6. Quiñones, J. P., Gothelf, K. V., Kjems, J., Yang, C., Caballero, A. M. H., Schmidt, C., & Covas, C. P. (2013). Self-assembled nanoparticles of modified-chitosan conjugates for the sustained release of dl-α-tocopherol. Carbohydrate Polymers, 92(1), 856-864. PMid:23218376. http://dx.doi.org/10.1016/j.carbpol.2012.10.005.

7. Luo, Y., Zhang, B., Whent, M., Yu, L., & Wang, Q. (2011). Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids and Surfaces. B, Biointerfaces, 85(2), 145-152. PMid:21440424. http://dx.doi.org/10.1016/j.colsurfb.2011.02.020.

8. Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces. B, Biointerfaces, 75(1), 1-18. PMid:19782542. http://dx.doi.org/10.1016/j.colsurfb.2009.09.001.

9. Rao, J. P., & Geckeler, K. E. (2011). Polymer nanoparticles: preparation techniques and size-control parameters. Progress in Polymer Science, 36(7), 887-913. http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001.

10. Kataoka, K., Harada, A., & Nagasaki, Y. (2001). Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews, 47(1), 113-131. PMid:11251249. http://dx.doi.org/10.1016/S0169-409X(00)00124-1.

11. Yoon, H.-J., & Jang, W.-D. (2010). Polymeric supramolecular systems for drug delivery. Journal of Materials Chemistry, 20(2), 211-222. http://dx.doi.org/10.1039/B910948J.

12. Sierra-Martin, B., Retama, J. R., Laurenti, M., Fernández Barbero, A., & López Cabarcos, E. (2014). Structure and polymer dynamics within PNIPAM-based microgel particles. Advances in Colloid and Interface Science, 205(0), 113-123. PMid:24275613. http://dx.doi.org/10.1016/j.cis.2013.11.001.

13. Pintauer, T., & Matyjaszewski, K. (2008). Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes. Chemical Society Reviews, 37(6), 1087-1097. PMid:18497922. http://dx.doi.org/10.1039/b714578k.

14. Hutmacher, D. W., Schantz, T., Zein, I., Ng, K. W., Teoh, S. H., & Tan, K. C. (2001). Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. Journal of Biomedical Materials Research, 55(2), 203-216. PMid:11255172. http://dx.doi.org/10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7.

15. English, J., & Perrin, D. (1998). Polycaprolactone. In A. Domb, J. Kost & D. Wiseman, Handbook of biodegradable polymers (pp. 63-76). Amsterdam: CRC Press.

16. Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32(8–9), 762-798. http://dx.doi.org/10.1016/j.progpolymsci.2007.05.017.

17. Peña A., Gutierrez S., Villamil J., Agudelo N. & Perez L.D. (2015). Policaprolactone/polyvinylpyrrolidone/siloxane hybrid materials: synthesis and in vitro delivery of diclofenac and biocompatibity with periodontal ligament fibroblasts. Materials Engineering and Science: C, 58(1), 60-9. http://dx.doi.org/10.1016/j.msec.2015.08.007.

18. Alarcon, C. H., Pennadam, S., & Alexander, C. (2005). Stimuli responsive polymers for biomedical applications. Chemical Society Reviews, 34(3), 276-285. PMid:15726163. http://dx.doi.org/10.1039/B406727D.

19. Diaz, I. L., & Perez, L. D. (2015). Synthesis and micellization properties of triblock copolymers PDMAEMA-b-PCL-b-PDMAEMA and their applications in the fabrication of amphotericin B-loaded nanocontainers. Colloid & Polymer Science, 293(3), 913-923. http://dx.doi.org/10.1007/s00396-014-3478-3.

20. Wang, C.-H., Wang, W.-T., & Hsiue, G.-H. (2009). Development of polyion complex micelles for encapsulating and delivering amphotericin B. Biomaterials, 30(19), 3352-3358. PMid:19299011. http://dx.doi.org/10.1016/j.biomaterials.2009.02.041.
588371dc7f8c9d0a0c8b4ac4 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections