Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Preparation and characterization of Zn(II) ion-imprinted polymer based on salicylic acrylate for recovery of Zn(II) ions

Ahmadi, Ebrahim; Gatabi, Javad; Mohamadnia, Zahra

Downloads: 0
Views: 661


This work describes the synthesis of new ion-imprinted polymers (IIPs) for selective solid phase extraction of Zn(II) ions from aqueous samples. IIPs were synthesized by copolymerization of salicylic acrylate (SA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a crosslinker in the presence of 2,2’-azobisisobutyronitrile (AIBN) as an initiator. The template ions were removed from IIPs particles by leaching with 0.1 M Ethylenediaminetetraacetic acid (EDTA) which leaves cavities in the particles with the capability of selective extraction of the Zn(II) ions. The monomer and the polymer after synthesis have been characterized by 1H NMR, 13C NMR and FT-IR studies. The effect of the pH on the extraction efficiency of Zn(II) ions was studied and optimized in pH around 6. The selectivity of the synthesized IIPs was studied in the presence of Co(II), Cd(II) and Ni(II) ions, and the IIPs showed higher affinity for Zn(II) in the presence of other interfering ions.


ion-imprinted polymers, salicylic acrylate, solid phase extraction, Zinc (II) ions.


1. Lenntech. (2013). Zinc - Zn. Netherlands. Retrieved in 11 September 2013, from http://www.lenntech.com/periodic/elements/zn.htm

2. Dong, Y., Ogawa, T., Lin, D., Koh, H. J., Kamiunten, H., Matsuo, M., & Cheng, S. (2006). Molecular mapping of quantitative trait loci for zinc toxicity tolerance in rice seedling (Oryza sativa L.). Field Crops Research, 95(2-3), 420-425. http://dx.doi.org/10.1016/j.fcr.2005.03.005.

3. Krebs, N. F. (2000). Overview of zinc absorption and excretion in the human gastrointestinal tract. The Journal of Nutrition, 130(5, Suppl), 1374S-1377S. PMid:10801946.

4. Pohl, P., Sergiel, I., & Prusisz, B. (2011). Direct analysis of honey for the total content of Zn and its fractionation forms by means of flame atomic absorption spectrometry with solid phase extraction and ultrafiltration approaches. Food Chemistry, 125(4), 1504-1509. http://dx.doi.org/10.1016/j.foodchem.2010.10.077.

5. Kaur, S., Walia, T. P. S., & Mahajan, R. K. (2008). Comparative studies of zinc, cadmium, lead and copper on economically viable adsorbents. Journal of Environmental Engineering and Science, 7(1), 83-90. http://dx.doi.org/10.1139/S07-031.

6. Pohl, P., & Prusisz, B. (2007). Fractionation analysis of manganese and zinc in tea infusions by two-column solid phase extraction and flame atomic absorption spectrometry. Food Chemistry, 102(4), 1415-1424. http://dx.doi.org/10.1016/j.foodchem.2006.09.007.

7. Turiel, E., & Martin-Esteban, A. (2010). Molecularly imprinted polymers for sample preparation: a review. Analytica Chimica Acta, 668(2), 87-99. http://dx.doi.org/10.1016/j.aca.2010.04.019. PMid:20493285.

8. Hu, Y., Pan, J., Zhang, K., Lian, H., & Li, G. (2013). Novel applications of molecularly-imprinted polymers in sample preparation. Trends in Analytical Chemistry, 43, 37-52. http://dx.doi.org/10.1016/j.trac.2012.08.014.

9. Martín-Esteban, A. (2013). Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. Trends in Analytical Chemistry, 45, 169-181. http://dx.doi.org/10.1016/j.trac.2012.09.023.

10. Nishide, H., Deguchi, J., & Tsuchida, E. (1976). Selective adsorption of metal ions on crosslinked poly(vinylpyridine) resin prepared with a metal ion as a template. Chemistry Letters, 5(2), 169-174. http://dx.doi.org/10.1246/cl.1976.169.

11. Tsukagoshi, K., Yu, K. Y., Maeda, M., & Takagi, M. (1993). Metal ion selective adsorbent prepared by surface imprinting polymerization. Bulletin of the Chemical Society of Japan, 66(1), 114-120. http://dx.doi.org/10.1246/bcsj.66.114.

12. Bae, S. Y., Southard, G. L., & Murray, G. M. (1999). Molecularly imprinted ion-exchange resin for purification, preconcentration and determination of UO22+ by spectrophotometry and plasma spectrometry. Analytica Chimica Acta, 397(1-3), 173-181. http://dx.doi.org/10.1016/S0003-2670(99)00402-X.

13. Branger, C., Meouche, W., & Margaillan, A. (2013). Recent advances on ion-imprinted polymers. Reactive & Functional Polymers, 73(6), 859-875. http://dx.doi.org/10.1016/j.reactfunctpolym.2013.03.021.

14. Rao, T. P., Kala, R., & Daniel, S. (2006). Metal ion-imprinted polymers: novel materials for selective recognition of inorganics. Analytica Chimica Acta, 578(2), 105-116. http://dx.doi.org/10.1016/j.aca.2006.06.065. PMid:17723701.

15. Polbom, K., & Severin, K. (1999). Molecular imprinting with an organometallic transition state analogue. Chemical Communications, 24, 2481-2482. http://dx.doi.org/10.1039/A908047C.

16. Remcho, V. T., & Tan, Z. J. (1999). MIPs as chromatographic stationary phases for molecular recognition. Analytical Chemistry, 71(7), 248A-255A. http://dx.doi.org/10.1021/ac990292q. PMid:21649059.

17. Araki, K., Maruyama, T., Kamiya, N., & Goto, M. (2005). Metal ion-selective membrane prepared by surface molecular imprinting. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 818(2), 141-145. http://dx.doi.org/10.1016/j.jchromb.2004.12.030. PMid:15734153.

18. Rosatzin, T., Andersson, L. I., Simon, W., & Mosbach, K. (1991). Preparation of Ca2+ selective sorbents by molecular imprinting using polymerisable ionophores. Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry, 2002(8), 1261-1265. http://dx.doi.org/10.1039/p29910001261.

19. Murray, G. M., Jenkins, A. L., Bzhelyansky, A., & Uy, O. M. (1997). Molecularly imprinted polymers for the selective sequestering and sensing of ions. Johns Hopkins APL Technical Digest, 18(4), 464-472.

20. Al-Kindy, S., Badía, R., Suárez-Rodríguez, J. L., & Díaz-García, M. E. (2000). Molecularly imprinted polymers and optical sensing applications. Critical Reviews in Analytical Chemistry, 30(4), 291-309. http://dx.doi.org/10.1080/10408340008984162.

21. Khajeh, M., Yamini, Y., Ghasemi, E., Fasihi, J., & Shamsipur, M. (2007). Imprinted polymer particles for selenium uptake: synthesis, characterization and analytical applications. Analytica Chimica Acta, 581(2), 208-213. http://dx.doi.org/10.1016/j.aca.2006.08.037. PMid:17386446.

22. Otero-Romaní, J., Moreda-Pineiro, A., Bermejo-Barrera, P., & Martin-Esteban, A. (2009). Inductively coupled plasma-optical emission spectrometry/mass spectrometry for the determination of Cu, Ni, Pb and Zn in seawater after ionic imprinted polymer based solid phase extraction. Talanta, 79(3), 723-729. http://dx.doi.org/10.1016/j.talanta.2009.04.066. PMid:19576436.

23. Shamsipur, M., Rajabi, H. R., Pourmortazavi, S. M., & Roushani, M. (2014). Ion imprinted polymeric nanoparticles for selective separation and sensitive determination of zinc ions in different matrices. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 117(3), 24-33. http://dx.doi.org/10.1016/j.saa.2013.07.094. PMid:23981411.

24. Zhai, Y., Liu, Y., Chang, X., Ruan, X., & Liu, J. (2008). Metal ion-small molecule complex imprinted polymer membranes: preparation and separation characteristics. Reactive & Functional Polymers, 68(1), 284-291. http://dx.doi.org/10.1016/j.reactfunctpolym.2007.08.013.

25. Ebrahimzadeh, H., Behbahani, M., Yamini, Y., Adlnasab, L., & Asgharinezhad, A. A. (2013). Optimization of Cu(II)-ion imprinted nanoparticles for trace monitoring of copper in water and fish samples using a Box-Behnken design. Reactive & Functional Polymers, 73(1), 23-29. http://dx.doi.org/10.1016/j.reactfunctpolym.2012.10.006.

26. Shakerian, F., Dadfarnia, S., & Shabani, A. M. H. (2012). Synthesis and application of nano-pore size ion imprinted polymer for solid phase extraction and determination of zinc in different matrices. Food Chemistry, 134(1), 488-493. http://dx.doi.org/10.1016/j.foodchem.2012.02.105.

27. Behbahani, M., Bagheri, A., Taghizadeh, M., Salarian, M., Sadeghi, O., Adlnasab, L., & Jalali, K. (2013). Synthesis and characterisation of nano structure lead (II) ion-imprinted polymer as a new sorbent for selective extraction and preconcentration of ultra trace amounts of lead ions from vegetables, rice, and fish samples. Food Chemistry, 138(2-3), 2050-2056. http://dx.doi.org/10.1016/j.foodchem.2012.11.042. PMid:23411342.

28. Zhao, J., Han, B., Zhang, Y., & Wang, D. (2007). Synthesis of Zn(II) ion-imprinted solid-phase extraction material and its analytical application. Analytica Chimica Acta, 603(1), 87-92. http://dx.doi.org/10.1016/j.aca.2007.09.024. PMid:17950062.

29. Kim, M., Jiang, Y., & Kim, D. (2013). Zn2+-imprinted porous polymer beads: synthesis, structure, and selective adsorption behavior for template ion. Reactive & Functional Polymers, 73(6), 821-827. http://dx.doi.org/10.1016/j.reactfunctpolym.2013.03.012.

30. Arbab-Zavar, M. H., Chamsaz, M., Zohuri, G., & Darroudi, A. (2011). Synthesis and characterization of nano-pore thallium (III) ion-imprinted polymer as a new sorbent for separation and preconcentration of thallium. Journal of Hazardous Materials, 185(1), 38-43. http://dx.doi.org/10.1016/j.jhazmat.2010.08.093. PMid:20971553.

31. Singh, D. K., & Mishra, S. (2010). Synthesis and characterization of Fe(III)-ion imprinted polymer for recovery of Fe(III) from water samples. Journal of Scientific and Industrial Research, 69, 767-772.

32. Baghel, A., Boopathi, M., Singh, B., Pandey, P., Mahato, T. H., Gutch, P. K., & Sekhar, K. (2007). Synthesis and characterization of metal ion imprinted nano-porous polymer for the selective recognition of copper. Biosensors & Bioelectronics, 22(12), 3326-3334. http://dx.doi.org/10.1016/j.bios.2007.01.016. PMid:17350247.

33. Singh, D. K., & Mishra, S. (2009). Synthesis, characterization and removal of Cd(II) using Cd(II)-ion imprinted polymer. Journal of Hazardous Materials, 164(2-3), 1547-1551. http://dx.doi.org/10.1016/j.jhazmat.2008.09.112. PMid:19027231.

34. Aydin, R., & Ozer, U. (2006). Formation of Yttrium(III) complexes with salicylic acid derivatives in aqueous solution. Turkish Journal of Chemistry, 30, 145-153.

35. Gordieyeff, V. A. (1950). Colorimetric determination of copper with pyridine and salicylic acid. Journal of Analytical Chemistry, 22(9), 1166-1168. http://dx.doi.org/10.1021/ac60045a020.

36. Kundu, S., Ghosh, S. K., Nath, S., Panigrahi, S., Praharaj, S., Basu, S., & Pal, T. (2005). Ion-associate of arsenic(V)-salicylic acid chelate with methylene blue in toluene: application for arsenic quantification. Indian Journal of Chemistry Sect. A, 44A(10), 2030-2033.

37. Degeiso, R. C., Donaruma, L. G., & Tomic, E. A. (1962). Polymeric ligands. I. Some salicylic acid derivatives. The Journal of Organic Chemistry, 27(4), 1424-1426. http://dx.doi.org/10.1021/jo01051a073.

38. Shah, B. A., Shah, A. V., & Bhatt, R. R. (2007). Studies of chelation ion-exchange properties of copolymer resin derived from salicylic acid and its analytical applications. Iranian Polymer Journal, 16(3), 173-184.

39. An, F., Gao, B., Dai, X., Wang, M., & Wang, X. (2011). Efficient removal of heavy metal ions from aqueous solution using salicylic acid type chelate adsorbent. Journal of Hazardous Materials, 192(3), 956-962. http://dx.doi.org/10.1016/j.jhazmat.2011.05.050. PMid:21741170.

40. Ahamed, M. A. R., Azarudeen, R. S., Karunakaran, M., & Burkanudeen, A. R. (2010). Synthesis, characterization, metal ion binding capacities and applications of a terpolymer resin of anthranilic acid/salicylic acid/formaldehyde. Iranian Polymer Journal, 19(8), 635-646.

41. Saxena, R., Singh, A. K., & Rathore, D. P. S. (1995). Salicylic acid functionalized polystyrene sorbent amberlite XAD-2. Synthesis and applications as a preconcentrator in the determination of zinc(II) and lead(II) by using atomic absorption spectrometry. Analyst, 120(2), 403-405. http://dx.doi.org/10.1039/an9952000403.

42. Xu, Q., Yin, P., Zhao, G., Yin, G., & Qu, R. (2010). Synthesis and characterization of silica gel microspheres encapsulated by salicyclic acid functionalized polystyrene and its adsorption of transition metal ions from aqueous solutions. Central European Journal of Chemistry, 8(1), 214-222. http://dx.doi.org/10.2478/s11532-009-0113-0.

43. Boussetta, S., Branger, C., Margaillan, A., Boudenne, J. L., & Coulomb, B. (2008). Salicylic acid and derivatives anchored on poly(styrene-co-divinylbenzene) resin and membrane via a diazo bridge: synthesis, characterisation and application to metal extraction. Reactive & Functional Polymers, 68(3), 775-786. http://dx.doi.org/10.1016/j.reactfunctpolym.2007.11.017.

44. Shishehbore, M. R., Afkhami, A., & Bagheri, H. (2011). Salicylic acid functionalized silica-coated magnetite nanoparticles for solid phase extraction and preconcentration of some heavy metal ions from various real samples. Chemistry Central Journal, 5(41), 1-10. PMid:21762480.

45. Singh, D. K., & Mishra, S. (2009). Synthesis of a New Cu(II)-Ion Imprinted Polymer for Solid Phase Extraction and Preconcentration of Cu(II). Chromatographia, 70(11-12), 1539-1545. http://dx.doi.org/10.1365/s10337-009-1379-2.

46. Sumi, V. S., Kala, R., Praveen, R. S., & Rao, T. P. (2008). Imprinted polymers as drug delivery vehicles for metal-based anti-inflammatory drug. International Journal of Pharmaceutics, 349(1-2), 30-37. http://dx.doi.org/10.1016/j.ijpharm.2007.07.017. PMid:17716841.

47. Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica. Section A, Crystal Physics, Diffraction, Theoretical and General Crystallography, 32(5), 751-767. http://dx.doi.org/10.1107/S0567739476001551.

48. Masram, D. T., Kariya, K. P., & Bhave, N. S. (2007). Synthesis of resin I: salicylic acid, hexamethylene diamine and formaldehyde and its ion-exchange properties. E-Polymers, 7(1), 872-883. http://dx.doi.org/10.1515/epoly.2007.7.1.872.
588371da7f8c9d0a0c8b4aba polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections