Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Oat fibers modification by reactive extrusion with alkaline hydrogen peroxide

Cardoso, Melina Aparecida Plastina; Carvalho, Gizilene Maria; Yamashita, Fabio; Mali, Suzana; Olivato, Juliana Bonametti; Grossmann, Maria Victória Eiras

Downloads: 0
Views: 782


The modification of lignocellulosic fibers can enhance their interaction with other materials and alkaline hydrogen peroxide (AHP) is a reagent widely used to promote such modification. This work aimed to modify oat hulls fibers by reactive extrusion using AHP (7 g 100 g-1 of hulls). The modified oat hulls displayed performances comparable to those observed by other researchers using conventional AHP method (without extrusion). The AHP treated oat hulls showed increased luminosity compared to the extruded ones. Fourier transform infrared spectroscopy showed differences between the modified and unmodified structures. The removal of surface compounds resulted in a more open morphology, with greater surface area and greater porosity. Reactive extrusion can be an alternative method for fiber modification with several advantages, such as short processing time and no wastewater generation.


chemical modification, lignocellulosic fibers, microstructure, thermal stability.


1. Averous, L., & Pollet, E. (2012). Biodegradable polymers. In L. Averous & E. Pollet (Eds.), Environmental silicate nano-biocomposites (pp. 13-39). London: Springer.

2. Tian, H., Tang, Z., Zhuang, X., Chen, X., & Jing, X. (2012). Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Progress in Polymer Science, 37(2), 237-280. http://dx.doi.org/10.1016/j.progpolymsci.2011.06.004.

3. Garcia, P. S., Grossmann, M. V. E., Shirai, M. A., Lazaretti, M. M., Yamashita, F., Müller, C., & Mali, S. (2013). Improving action of citric acid as compatibilizer in starch/polyester blown films. Industrial Crops and Products, 52, 305-312. http://dx.doi.org/10.1016/j.indcrop.2013.11.001.

4. Morán, J. I., Vázquez, A., & Cyras, V. P. (2013). Bio-nanocomposites based on derivatized potato starch and cellulose, preparation and characterization. Journal of Materials Science, 48(20), 7196-7203. http://dx.doi.org/10.1007/s10853-013-7536-x.

5. Olivato, J. B., Nobrega, M. M., Müller, C. M. O., Shirai, M. A., Yamashita, F., & Grossmann, M. V. E. (2013). Mixture design applied for the study of the tartaric acid effect on starch/polyester films. Carbohydrate Polymers, 92(2), 1705-1710. PMid:23399209. http://dx.doi.org/10.1016/j.carbpol.2012.11.024.

6. Ren, J., Fu, H., Ren, H., & Yuan, W. (2009). Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate). Carbohydrate Polymers, 77(3), 576-582. http://dx.doi.org/10.1016/j.carbpol.2009.01.024.

7. Shirai, M. A., Grossmann, M. V. E., Mali, S., Yamashita, F., Garcia, P. S., & Müller, C. M. O. (2013). Development of biodegradable flexible films of starch and poly (lactic acid) plasticized with adipate or citrate esters. Carbohydrate Polymers, 92(1), 19-22. PMid:23218260. http://dx.doi.org/10.1016/j.carbpol.2012.09.038.

8. Pereira, P. H. F., Freitas, M. F., Cioffi, M. O. H., Benini, K. C. C. C., Milanese, A. C., Voorwald, H. C. J., & Mulinari, D. R. (2015). Vegetal fibers in polymeric composites: a review. Polímeros: Ciência e Tecnologia, 25(1), 9-22. http://dx.doi.org/10.1590/0104-1428.1722.

9. Lopes-Gil, A., Rodrigues-Perez, M. A., De Saja, J. A., Bellucci, F. S. & Ardanuy, M. (2014). Strategies to improve the mechanical properties of starch-based materials: plasticization and natural fibers reinforcement. Polímeros: Ciência e Tecnologia, 24, 36-42. http://dx.doi.org/10.4322/polimeros.2014.054.

10. Karimi, S., Dufresne, A., Tahir, P. M., Karimi, A., & Abdulkhani, A. (2014). Biodegradable starch-based composites: effect of micro and nanoreinforcements on composite properties. Journal of Materials Science, 49(13), 4513-4521. http://dx.doi.org/10.1007/s10853-014-8151-1.

11. Elbadry, E. A., Aly-Hassan, M. S., & Hamada, H. (2012). Mechanical properties of natural jute fabric/jute mat fiber reinforced polymer matrix hybrid composites. Advances in Mechanical Engineering, 20, 1-12. http://dx.doi.org/10.1155/2012/354547.

12. Castro, D. O., Frollini, E., Marini, J., & Ruvolo-Filho, A. (2013). Preparação e caracterização de biocompósitos baseados em fibra de curauá, biopolietileno de alta densidade (BPEAD) e polibutadieno líquido hidroxilado (PBHL). Polímeros: Ciência e Tecnologia, 23(1), 65-73. http://dx.doi.org/10.1590/S0104-14282013005000002.

13. Silva, R., Haraguchi, S. K., Muniz, E. C., & Rubira, A. F. (2009). Applications of lignocellulosic fibers in polymer chemistry and in composites. Quimica Nova, 32(3), 661-671. http://dx.doi.org/10.1590/S0100-40422009000300010.

14. Mali, S., Debiagi, F., Grossmann, M. V. E., & Yamashita, F. (2010). Starch, sugarcane bagasse fibre, and polyvinyl alcohol effects on extruded foam properties: a mixture design approach. Industrial Crops and Products, 32(3), 353-350. http://dx.doi.org/10.1016/j.indcrop.2010.05.014.

15. Corradini, E., Agnelli, J. A. M., Morais, L. C., & Mattoso, L. H. C. (2008). Study of Properties of Biodegradable Composites of Starch/Gluten/Glycerol Reinforced with Sisal Fibers. Polímeros: Ciência e Tecnologia, 18(4), 353-358. http://dx.doi.org/10.1590/S0104-14282008000400016.

16. Debiagi, F., Mali, S., Grossmann, M. V. E., & Yamashita, F. (2010). Effects of vegetal fibers on properties of cassava starch biodegradable composites produced by extrusion. Ciência e Agrotecnologia, 34(6), 1522-1529. http://dx.doi.org/10.1590/S1413-70542010000600024.

17. Campos, A., Teodoro, K. B. R., Marconcini, J. M., Matosso, L. H. C., & Martins-Franchetti, S. M. M. (2011). Effect of fiber treatments on properties of thermoplastic starch/polycaprolactone/sisal biocomposites. Polímeros: Ciência e Tecnologia, 21(3), 217-222. http://dx.doi.org/10.1590/S0104-14282011005000039.

18. Reddy, N., & Yang, Y. (2005). Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology, 23(1), 22-27. PMid:15629854. http://dx.doi.org/10.1016/j.tibtech.2004.11.002.

19. Brígida, A. I. S., Calado, V. M. A., Gonçalves, L. R. B., & Coelho, M. A. S. (2010). Effect of chemical treatments on properties of green coconut fiber. Carbohydrate Polymers, 79(4), 832-838. http://dx.doi.org/10.1016/j.carbpol.2009.10.005.

20. George, J., Sreekala, M. S., & Thomas, S. (2001). A review on interface modification and characterization of natural fiber reinforced plastic composites. Polymer Engineering and Science, 41(9), 1471-1485. http://dx.doi.org/10.1002/pen.10846.

21. Hassan, M. L., Hassan, E. A., & Oksman, K. N. (2011). Effect of pretreatment of bagasse fibers on the properties of chitosan/microfibrillated cellulose nanocomposites. Journal of Materials Science, 46(6), 1732-1740. http://dx.doi.org/10.1007/s10853-010-4992-4.

22. Kim, H., Okubo, K., Fujii, T., & Takemura, K. (2013). Influence of fiber extraction and surface modification on mechanical properties of green composites with bamboo fiber. Journal of Adhesion Science and Technology, 27(12), 1348-1358. http://dx.doi.org/10.1080/01694243.2012.697363.

23. Mwaikambo, L. Y., & Ansell, M. P. (2001). Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science, 84(12), 2222-2234. http://dx.doi.org/10.1002/app.10460.

24. Ray, D., Sarkar, B. K., Rana, A. K., & Bose, N. R. (2001). Effect of alkali treated jute fibers on composite properties. Bulletin of Materials Science, 24(2), 129-135. http://dx.doi.org/10.1007/BF02710089.

25. Sinha, E., & Rout, S. K. (2009). Influence of fiber surface treatment on structural, thermal and mechanical properties of jute fiber and its composite. Bulletin of Materials Science, 32(1), 65-76. http://dx.doi.org/10.1007/s12034-009-0010-3.

26. Correia, J. A. C., Marques, J. E., Jr., Gonçalves, L. R. B., & Rocha, M. V. P. (2013). Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: study of parameters. Bioresource Technology, 139, 249-256. PMid:23665519. http://dx.doi.org/10.1016/j.biortech.2013.03.153.

27. Mancera, A., Fierro, V., Pizzi, A., Dumarçay, S., Gérardin, P., Velásquez, J., Quintana, G., & Celzard, A. (2010). Physicochemical characterization of sugar cane bagasse lignin oxidized by hydrogen peroxide. Polymer Degradation & Stability, 95(4), 470-476. http://dx.doi.org/10.1016/j.polymdegradstab.2010.01.012.

28. Rosa, M. F., Chiou, B., Medeiros, E. S., Wood, D. F., Williams, T. G., Mattoso, L. H. C., Orts, W. J., & Imam, S. H. (2009). Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresource Technology, 100(21), 5196-5202. PMid:19560341. http://dx.doi.org/10.1016/j.biortech.2009.03.085.

29. Galdeano, M. C., & Grossmann, M. V. E. (2005). Effect of treatment with alkaline hydrogen peroxide associated with extrusion on color and hydration properties of oat hulls. Brazilian Archives of Biology and Technology, 48(1), 63-72. http://dx.doi.org/10.1590/S1516-89132005000100010.

30. Seibel, N. F., & Beléia, A. P. (2009). The chemical characteristics and technological functionality of soybean based ingredients [Glycine Max (L.) Merrill]: carbohydrates and proteins. Brazilian Journal of Food Technology, 12(2), 113-122. http://dx.doi.org/10.4260/BJFT20093607.

31. Bustos, F. M., Contreras, R. V., García, T. G., Nabeshima, E. H., & Guzmán, I. V. (2011). Some functional characteristics of extruded blends of fiber from sugarcane bagasse, whey protein concentrate, and corn starch. Food Science and Technology, 31(4), 870-878. http://dx.doi.org/10.1590/S0101-20612011000400007.

32. Wang, X., Shen, X., & Xu, W. (2012). Effect of hydrogen peroxide treatment on the properties of wool fabric. Applied Surface Science, 258(24), 10012-10016. http://dx.doi.org/10.1016/j.apsusc.2012.06.065.

33. Gould, J. M., Jasberg, B. K., & Cote, G. L. (1989). Structure-function relationships of alkaline-peroxide treated lignocelluloses from wheat straw. Cereal Chemistry, 66(3), 213-217.

34. Fengel, D., & Wegener, G. (1983). Wood-Chemistry, ultrastructure, reactions (pp. 133-181). Berlin: Walter de Gruyter.

35. Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fiber reinforced polymer composites: an overview. Composites. Part B, Engineering, 43(7), 2883-2892. http://dx.doi.org/10.1016/j.compositesb.2012.04.053.

36. Lund, K., Sjostrom, K., & Brelid, H. (2012). Alkali extraction of kraft pulp fibers: influence on fiber and fluff pulp properties. Journal of Engineered Fibers and Fabrics, 7(2), 30-39.

37. Teodoro, K. B. R., Teixeira, E. M., Corrêa, A. C., Campos, A., Marconcini, J. M., & Mattoso, L. H. C. (2011). Whiskers from sisal fibers obtained under different acid hydrolysis conditions: effect of time and temperature of extraction. Polímeros: Ciência e Tecnologia, 21(4), 280-285. http://dx.doi.org/10.1590/S0104-14282011005000048.

38. Ardanuy, M., Antunes, M., & Velasco, J. I. (2012). Vegetable fibres from agricultural residues as thermo-mechanical reinforcement in recycled polypropylene-based green foams. Waste Management (New York, N.Y.), 32(2), 256-263. PMid:22005571. http://dx.doi.org/10.1016/j.wasman.2011.09.022.

39. Liu, L., Chen, H., & Pan, D. (2012). Modification of polyacrylonitrile precursor fiber with hydrogen peroxide. FiberPolymers, 13(5), 587-592. http://dx.doi.org/10.1007/s12221-012-0587-9.

40. Sun, R., Tomkinson, J., & Ye, J. (2003). Physico-chemical and structural characterization of residual lignins isolated with TAED activated peroxide from ultrasound irradiated and alkali pre-treated wheat straw. Polymer Degradation & Stability, 79(2), 241-251. http://dx.doi.org/10.1016/S0141-3910(02)00287-2.

41. Suradi, S. S., Yunus, R. M., Beg, M. D. H., & Yusof, Z. A. M. (2009). Influence of pre-treatment on the properties of lignocellulose based biocomposite. In National Conference on Postgraduate Research (pp. 67-78). Pahang: University Malaysia.

42. Arbelaiz, A., Fernández, B., Valea, A., & Mondragon, I. (2006). Mechanical properties of short flax fiber bundle/poly (3-caprolactone) composites: Influence of matrix modification and fiber content. Carbohydrate Polymers, 64(2), 224-232. http://dx.doi.org/10.1016/j.carbpol.2005.11.030.

43. Khan, G. M. A., & Alam, M. S. (2012). Thermal characterization of chemically treated coconut husk fiber. Indian Journal of Fiber & Textile Research, 37(1), 20-26. Retrieved in 11 August 2015, from http://nopr.niscair.res.in/handle/123456789/13681.

44. Chen, X., Yu, J., Zhang, Z., & Lu, C. (2011). Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydrate Polymers, 85(1), 245-250. http://dx.doi.org/10.1016/j.carbpol.2011.02.022.
588371dc7f8c9d0a0c8b4ac3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections