Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2277
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Preparação e caracterização do compósito PVDF/Pani com partículas de níquel

Preparation and characterization the composite PVDF/Pani with nickel particles

Dias, Gabriel da Cruz; Paula, Fernando Rogério de; Malmonge, José Antonio; Malmonge, Luiz Francisco

Downloads: 1
Views: 1060

Resumo

Neste trabalho partículas de níquel foram incorporadas através da mistura física do pó resultante da mistura PVDF/Pani obtido por síntese química. Filmes homogêneos foram obtidos através da prensagem a temperatura de 180°C. A partir dos resultados pode-se notar alterações favoráveis e desfavoráveis nas propriedades do compósito após a incorporação e como estas tornam-se dependentes da incorporação. Os resultados de difratometria apresentaram picos característicos tanto da fase α da matriz polimérica e das partículas de níquel, e juntamente com as analises térmicas, que não há alteração na estrutura conformacional e a configuracional. Mesmo apresentando uma boa estabilidade térmica a incorporação indica que além da presença do polímero condutor como o aumento de partículas são prejudiciais às propriedades mecânicas finais da amostra. As micrografias apresentam as partículas de forma dispersas ao longo do filme e determinantes para os valores de condutividade elétrica e obtenção de uma fase magnética.

Palavras-chave

polianilina, poli(fluoreto de vinilideno), níquel, compósito, propriedades magnéticas.

Abstract

In this work nickel particles were incorporated by physically mixing of resulting powder blends of PVDF/Pani, obtained by chemical synthesis. Homogeneous films were obtained by hot pressing at 180 °C. From the results could be noted favorable and unfavorable changes in the properties of composites after incorporation and how this become dependent of the incorporation. The results of diffraction showed the characteristic peaks of both the α phase of the polymer matrix and the nickel particles, and with thermal analysis, no change in the conformational structure and configurational. Even with a good thermal stability incorporating, indicates that besides the presence of the conducting polymer as the increase of particles are harmful to the final mechanical properties of the sample. Micrographs showed particles dispersed throughout the film and determinants to electrical conductivity values and achieving a magnetic phase.

Keywords

polyaniline, poly (vinylidene fluoride), nickel, composite, magnetic property.

References

1. Mazumdar, S. K. (2002). Composites manufacturing: materials, product, and process. New York: CRC Press LLC.

2. Mamunya, Y. P., Davydenko, V. V., Pissis, P., & Lebedev, E. V. (2002). Electrical and thermal conductivity of polymers filled with metal powders. European Polymer Journal, 38(9), 1887-1897. http://dx.doi.org/10.1016/S0014-3057(02)00064-2.

3. Strümpler, R., & Glatz-reichenbach, J. (1999). Conducting polymer composites. Journal of Electroceramics, 3(4), 329-346. http://dx.doi.org/10.1023/A:1009909812823.

4. Gustafsson, G., Cao, Y., Treacy, G. M., Klavetter, F., Colaneri, N., & Heeger, A. J. (1992). Flexible light-emitting diodes made from soluble conducting polymers. Nature, 357(6378), 477-479. http://dx.doi.org/10.1038/357477a0.

5. Fabrizio, M., Mengoli, G., Musiani, M. M., & Paolucci, F. (1991). Electrochemical characterization of PANI-Nafion membranes and their electrocatalitic activity. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 300(1-2), 23-34. http://dx.doi.org/10.1016/0022-0728(91)85381-X.

6. Bousquet, A., Awada, H., Hiorns, R. C., Dagron-Lartigau, C., & Billon, L. (2014). Conjugated-polymer grafting on inorganic and organic substrates: a new trend in organic electronic materials. Progress in Polymer Science, 39(11), 1847-1877. http://dx.doi.org/10.1016/j.progpolymsci.2014.03.003.

7. Shinar, J., & Shinar, R. (2011). An overview of organic light-emitting diodes and their applications. In D. L. Andrews, G. D. Scholes & G. P. Wiederrecht (Eds.), Reference module in materials science and materials engineering - comprehensive nanoscience and technology (pp. 73-107). The Netherlands: Elsevier. http://dx.doi.org/10.1016/B978-0-12-803581-8.09254-7.

8. Guo, H.C., Ye, E., Li, Z., Han, M.-Y., Loh, X.J. (2016). Recent progress of atomic layer deposition on polymeric materials. Materials Science & Engineering. C, Materials for Biological Applications, 70(Pt 2), 1182-1191. http://dx.doi.org/10.1016/j.msec.2016.01.093.

9. Oh, M.-C., Chu, W.-S., Shin, J.-S., Kim, J.-W., Kim, K.-J., Seo, J.-K., Lee, H.-K., Noh, Y.-O., & Lee, H.-J. (2016). Polymeric optical waveguide devices exploiting special properties of polymer materials. Optics Communications, 362(1), 3-12. http://dx.doi.org/10.1016/j.optcom.2015.07.079.

10. Aksimentyeva, O. I., Artym, V. T., Melnik, O. I., & Plusnina, T. A. (1994). Magnetic properties of conduncting polymers. Acta Physica Polonica, Warsaw, 85(1), 237-240. http://dx.doi.org/10.12693/APhysPolA.85.237.

11. Harun, M. H., Saion, E., Kassim, A., Yahya, N., & Mahmud, E. H. N. M. (2002). Conjugated conducting polymers: a brief overview. UCSI Academic Journal. Journal for the Advancement of Science & Arts, 2, 63-68.

12. Gao, C., & Chen, G. (2016). Conducting polymer/carbon particle thermoelectric composites: Emerging green energy materials. Composites Science and Technology, 124, 52-70. http://dx.doi.org/10.1016/j.compscitech.2016.01.014.

13. Shirakawa, H., Louis, E. J., Macdiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene. Journal of the Chemical Society. Chemical Communications, 16(16), 578-580. http://dx.doi.org/10.1039/c39770000578.

14. Bredas, J. L., & Street, G. B. (1985). Polarons, bipolarons,and solitons in conducting polymers. Accounts of Chemical Research, 18(10), 309-315. http://dx.doi.org/10.1021/ar00118a005.

15. Devine, J. N., Crayston, J. A., & Walton, J. C. (1999). Synthesis and design of potential polaronic ferromagnets. Synthetic Metals, 101(1-3), 2294-2295. http://dx.doi.org/10.1016/S0379-6779(98)00635-3.

16. Onoda, M., Nakayama, H., Morita, S., & Yoshino, K. (1993). Electrochemicaldoping properties and electronic states of poly(3-phenylthiophene). Journal of Applied Physics, 73(6), 2859-2865. http://dx.doi.org/10.1063/1.353013.

17. Sersen, F., Cik, G., Szabo, L., & Dlhán, L. (1996). Role of polarons in the antiferromagnetic behavior of poly (3-dodecylthiophene). Synthetic Metals, 80(3), 297-300. http://dx.doi.org/10.1016/0379-6779(96)80217-7.

18. Barta, P. E., Niziol, S., Le Guennec, P., Pron, A. (1994). Doping-induced magnetic phase transition in poly(3-Alkylthiophenes). Physical Review B, 50(5), 3016-3024. http://dx.doi.org/10.1103/PhysRevB.50.3016.

19. Zaidi, N. A., Giblin, S. R., Terry, I., & Monkman, A. P. (2004). Room temperature magnetic order in an organic magnet derived from polyaniline. Polymer, 45(16), 5683-5689. http://dx.doi.org/10.1016/j.polymer.2004.06.002.

20. Long, Y., Chen, Z., Shen, J., Zhang, Z., Zhang, L., Xiao, H., Wan, M., & Duvail, J. L. (2006). Magnetic properties of conducting polymer nanostructures. The Journal of Physical Chemistry. B, 110(46), 23228-23233. PMid:17107170. http://dx.doi.org/10.1021/jp062262e.

21. Pereira, E. C., Correa, A. A., Bulhões, L. O. S., Aleixo, P. C., Nóbrega, J. A., Oliveira, J. A., Ortiz, W. A., & Walmsley, L. (2011). Polaronic ferromagnetism in conducting polymers. Journal of Magnetism and Magnetic Materials, 226, 2023-2025. http://dx.doi.org/10.1016/S0304-8853(01)00095-6.

22. Mattoso, L. H. C. (1996). Plástico que conduzem eletricidade: ficção ou realidade? Polímeros: Ciência e Tecnologia, 6, 6-10.

23. Roth, S., & Graupner, W. (1993). Conductive polymers: evaluation of industrial applications. Synthetic Metals, 57(1), 3623-3631. http://dx.doi.org/10.1016/0379-6779(93)90487-H.

24. Medeiros, E. S., Oliveira, J. E., Consolin-Filho, N., Paterno, L. G., & Mattoso, L. H. C. (2012). Uso de polímeros condutores em sensores: parte 1: Introdução aos polímeros condutores. Revista Eletrônica de Materiais e Processos,7(2), 62-77.

25. Malmonge, L. F., & Mattoso, L. H. C. (1995). Electroactive blends of poly (vinylidene fluoride) and polyaniline derivatives. Polymer, 36(2), 245-249. http://dx.doi.org/10.1016/0032-3861(95)91310-4.

26. Bhadra, S., Khastgir, D., Singha, N. K., & Lee, J. H. (2009). Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science, 34(8), 783-810. http://dx.doi.org/10.1016/j.progpolymsci.2009.04.003.

27. Lovinger, A. J. (1982). Developments in crystalline polymers (Vol. 1). United Kingdom: Applied Science Publisher Ltda.

28. Nor, N. A. M., Jaafar, J., Ismail, A. F., Mohamed, M. A., Rahman, M. A., Othman, M. H. D., Lau, W. J., & Yusof, N. (2016). Preparation and performance of PVDF-based nanocomposite membrane consisting of TiO2 nanofibers for organic pollutant decomposition in wastewater under UV irradiation. Desalination, 391, 89-97. http://dx.doi.org/10.1016/j.desal.2016.01.015.

29. Woo, Y. C., Kim, Y., Shim, W.-G., Tijing, L. D., Yao, M., Nghiem, L. D., Choi, J.-S., Kim, S.-H., & Shon, H. K. (2016). Graphene/PVDF flat-sheet membrane for the treatment of RO brine from coal seam gas produced water by air gap membrane distillation. Journal of Membrane Science, 513, 74-84. http://dx.doi.org/10.1016/j.memsci.2016.04.014.

30. Malmonge, L. F., Lopes, G. A., Langiano, S. C., Malmonge, J. A., Cordeiro, J. M. M., & Mattoso, L. H. C. (2006). A new route to obtain PVDF/PANI conducting blends. European Polymer Journal, 42(11), 3108-3113. http://dx.doi.org/10.1016/j.eurpolymj.2006.08.002.

31. ASM International. (2000). ASM specialty handbook nickel, cobalt, and their alloys (06178G). San Francisco: J. R. Davis & Associates.

32. Zulfiqar, S., Zulfiqar, M., Rizvi, M., Munir, A., & McNeill, I. C. (1994). Study of the thermal-degradation of polychlorotrifluoroethylene, poly(vinylidene fluoride) and copolymers of chlorotrifluoroethylene and vinylidene fluoride. Polymer Degradation & Stability, 43(3), 423-430. http://dx.doi.org/10.1016/0141-3910(94)90015-9.

33. Gomes, E. C., & Oliveira, M. A. S. (2012). Chemical polymerization of aniline in hydrochloric acid (HCl) and formic acid (HCOOH) media. Differences between the two synthesized polyanilines. American Journal of Political Science, 2(2), 5-13. http://dx.doi.org/10.5923/j.ajps.20120202.02.

34. Palaniappan, S., & Narayana, B. H. (1994). Conducting polyaniline salts: thermogravimetric and differential thermal analysis. Thermochimica Acta, 237(1), 91-97. http://dx.doi.org/10.1016/0040-6031(94)85187-5.

35. Liu, Z., Maréchal, P., & Jérôme, R. (1997). DMA and DSC investigations of the β transition of poly(vinylidene fluoride). Polymer, 38(19), 4925-4929. http://dx.doi.org/10.1016/S0032-3861(96)01074-9.

36. Pandey, S. S., Gerard, M., Sharma, A. L., & Malhotra, B. D. (2000). Thermal analysis of chemically synthesized polyemeraldine base. Journal of Applied Polymer Science, 75(1), 149-155. http://dx.doi.org/10.1002/(SICI)1097-4628(20000103)75:1<149::AID-APP17>3.0.CO;2-X.

37. Silva, M. J., Kanda, D. H. F., & Nagashima, H. N. (2012). Mechanism of charge transport in castor oil-based polyurethane/carbon black composite (PU/CB). Journal of Non-Crystalline Solids, 358(2), 270-275. http://dx.doi.org/10.1016/j.jnoncrysol.2011.09.032.

38. Suwanwatana, W., Yarlagadda, S., & Gillespie Jr., J. W. Influence of particle size on hysteresis heating behavior of nickel particulate polymer films. Composites Science and Technology, 66, 2825-2836. http://dx.doi.org/10.1016/j.compscitech.2006.02.033.

39. Moskowitz, B. M. (2006). Hitchhiker’s guide to magnetism. 3rd ed. Minneapolis: University of Minnesota.

40. Zhang, Y., Qi, S., Zhang, F., Yang, Y., & Duan, G. (2011). Preparation and magnetic properties of polymer magnetic composites based on acrylate resin filled with nickel plating graphite nanosheets. Applied Surface Science, 258(2), 732-737. http://dx.doi.org/10.1016/j.apsusc.2011.08.001.

41. Ko, J. M., Park, D.-Y., Myung, N. V., Chung, J. S., & Nobe, K. (2002). Electrodeposited conducting polymer–magnetic metal composite films. Synthetic Metals, 128(1), 47-50. http://dx.doi.org/10.1016/S0379-6779(01)00566-5.

42. Chen, W., Li, X., Xue, G., Wang, Z., & Zou, W. (2003). Magnetic and conducting particles: preparation of polypyrrole layer on Fe3O4 nanospheres. Applied Surface Science, 218(1- 4), 215-221. http://dx.doi.org/10.1016/S0169-4332(03)00590-7.

43. Konyushenko, E. N., Kazantseva, N. E., Stejskal, J., Trchova, M., Kovarova, J., Sapurina, I., Tomishko, M. M., Demicheva, O. V., & Prokes, J. (2008). Ferromagnetic behaviour of polyaniline-coated multi-wall carbono nanotubes containing nickel nanoparticles. Journal of Magnetism and Magnetic Materials, 320(3- 4), 231-240. http://dx.doi.org/10.1016/j.jmmm.2007.05.036.

44. Nandapure, B. L., Kondawar, S. B., & Nandapure, A. L. (2012). Magnetic properties of nanostructured cobalt and nickel oxide reinforced polyaniline composites. International Journal of Computers and Applications, 2, 9-14.

5b7ac9890e88254171896e53 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections