Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Preparation of curcumin-loaded nanoparticles and determination of the antioxidant potential of curcumin after encapsulation

Silva-Buzanello, Rosana Aparecida da; Souza, Mateus Ferreira de; Oliveira, Daniela Alves de; Bona, Evandro; Leimann, Fernanda Vitória; Cardozo Filho, Lúcio; Araújo, Pedro Henrique Hermes de; Ferreira, Sandra Regina Salvador; Gonçalves, Odinei Hess

Downloads: 1
Views: 837


Encapsulation of bioactive compounds has been carried out to improve bioavailability and to protect them against harm conditions. However, encapsulation processes are often aggressive and it is important that encapsulated substances keep their biological activity. In this work curcumin was nanoencapsulated using dichloromethane as solvent and ultrasound as dispersion device. Nanoparticles were obtained using different curcumin concentrations and encapsulants (PLLA and Eudragit S100) and the encapsulation efficiency was inferred using spectroscopic and calorimetric techniques as well as optical microscopy. Total phenolic contents and antioxidant activity tests were applied to the curcumin before and after encapsulation and also to blank polymer nanoparticles. Results demonstrated that the encapsulation process had no deleterious influence on its antioxidant activity.


curcumin, antioxidant potential, nanoencapsulation, miniemulsification.


1. Aggarwal, B. B., Kumar, A., & Bharti, A. C. (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Research, 23(1A), 363-398. PMid:12680238.

2. Aggarwal, B. B., Sundaram, C., Malani, N., & Ichikawa, H. (2007). Curcumin: the Indian solid gold. Advances in Experimental Medicine and Biology, 595(1), 1-75. http://dx.doi.org/10.1007/978-0-387-46401-5_1. PMid:17569205.

3. Ak, T., & Gülçin, I. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions, 174(1), 27-37. http://dx.doi.org/10.1016/j.cbi.2008.05.003. PMid:18547552.

4. Gilda, S., Kanitkar, M., Bhonde, R., & Paradkar, A. (2010). Activity of water-soluble turmeric extract using hydrophilic excipients. LWT - Food Science and Technology, 43(1), 59-66. http://dx.doi.org/10.1016/j.lwt.2009.07.004.

5. Eybl, V., Kotyzova, D., & Koutensky, J. (2006). Comparative study of natural antioxidants - curcumin, resveratrol and melatonin - in cadmium-induced oxidative damage in mice. Toxicology, 225(2-3), 150-156. http://dx.doi.org/10.1016/j.tox.2006.05.011. PMid:16806632.

6. Wright, J. S. (2002). Predicting the antioxidant activity of curcumin and curcuminoids. Journal of Molecular Structure THEOCHEM, 591(1-3), 207-217. http://dx.doi.org/10.1016/S0166-1280(02)00242-7.

7. Priyadarsini, K. I., Maity, D. K., Naik, G. H., Kumar, M. S., Unnikrishnan, M. K., Satav, J. G., & Mohan, H. (2003). Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radical Biology & Medicine, 35(5), 475-484. http://dx.doi.org/10.1016/S0891-5849(03)00325-3. PMid:12927597.

8. Galano, A., Álvarez-Diduk, R., Ramírez-Silva, M. T., Alarcón-Ángeles, G., & Rojas-Hernández, A. (2009). Role of the reacting free radicals on the antioxidant mechanism of curcumin. Chemical Physics, 363(1-3), 13-23. http://dx.doi.org/10.1016/j.chemphys.2009.07.003.

9. Feng, J.-Y., & Liu, Z.-Q. (2009). Phenolic and enolic hydroxyl groups in curcumin: which plays the major role in scavenging radicals? Journal of Agricultural and Food Chemistry, 57(22), 11041-11046. http://dx.doi.org/10.1021/jf902244g. PMid:19736944.

10. Paramera, E. I., Konteles, S. J., & Karathanos, V. T. (2011). Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chemistry, 125(1), 892-902. http://dx.doi.org/10.1016/j.foodchem.2010.09.063.

11. Rocha, B. A., Gonçalves, O. H., Leimann, F. V., Rebecca, E. S. W., Silva-Buzanello, R. A., Filho, L. C., Araújo, P. H. H., Cuman, R. K. N., & Bersani-Amado, C. A. (2014). Curcumin encapsulated in poly-L-lactic acid improves its anti-inflammatory efficacy in vivo. Advancement in Medicinal Plant Research, 2(4), 62-73.

12. Staff, R. H., Schaeffel, D., Turshatov, A., Donadio, D., Butt, H.-J., Landfester, K., Koynov, K., & Crespy, D. (2013). Particle formation in the emulsion-solvent evaporation process. Small, 9(20), 3514-3522. http://dx.doi.org/10.1002/smll.201300372. PMid:23606602.

13. Silva-Buzanello, R. A., Ferro, A. C., Bona, E., Cardozo-Filho, L., Araújo, P. H. H., Leimann, F. V., & Gonçalves, O. H. (2015). Validation of an Ultraviolet–visible (UV–Vis) technique for the quantitative determination of curcumin in poly(l-lactic acid) nanoparticles. Food Chemistry, 172(1), 99-104. http://dx.doi.org/10.1016/j.foodchem.2014.09.016. PMid:25442529.

14. Bendix, D. (1998). Chemical synthesis of polylactide and its copolymers for medical applications. Polymer Degradation & Stability, 59(1-3), 129-135. http://dx.doi.org/10.1016/S0141-3910(97)00149-3.

15. Leimann, F. V., Cardozo, L., Sayer, C., & Araújo, P. H. H. (2013). Poly(3-hydroxybutyrate-co-3- hydroxyvalerate) nanoparticles prepared by a miniemulsion/solvent evaporation technique. Effect of PHBV molar mass and concentration. Brazilian Journal of Chemical Engineering, 30(2), 369-377. http://dx.doi.org/10.1590/S0104-66322013000200014.

16. Reimers, J. L., & Schork, F. J. (1996). Predominant droplet nucleation in emulsion polymerization. Journal of Applied Polymer Science, 60(1), 251-262. http://dx.doi.org/10.1002/(SICI)1097-4628(19960411)60:2<251::AID-APP13>3.0.CO;2-8.

17. Garlotta, D. (2002). A literature review of poly(lactic acid). Journal of Polymers and the Environment, 9(2), 63-84. http://dx.doi.org/10.1023/A:1020200822435.

18. Prado, A. C. P., Aragão, A. M., Fett, R., & Block, J. M. (2009). Antioxidant properties of Pecan nut [Carya illinoinensis (Wangenh.) C. Koch] shell infusion. Grasas y Aceites, 60(4), 330-335. http://dx.doi.org/10.3989/gya.107708.

19. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9-10), 1231-1237. http://dx.doi.org/10.1016/S0891-5849(98)00315-3. PMid:10381194.

20. Matthäus, B. (2002). Antioxidant activity of extracts obtained from residues of different oilseeds. Journal of Agricultural and Food Chemistry, 50(12), 3444-3452. http://dx.doi.org/10.1021/jf011440s. PMid:12033809.

21. Paramera, E. I., Konteles, S. J., & Karathanos, V. T. (2011). Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, β-cyclodextrin and modified starch. Food Chemistry, 125(3), 913-922. http://dx.doi.org/10.1016/j.foodchem.2010.09.071.

22. Wang, Y., Lu, Z., Lv, F., & Bie, X. (2009). Study on microencapsulation of curcumin pigments by spray drying. European Food Research and Technology, 229(3), 391-396. http://dx.doi.org/10.1007/s00217-009-1064-6.

23. Patel, A., Hu, Y., Tiwari, J. K., & Velikov, K. P. (2010). Synthesis and characterisation of zein–curcumin colloidal particles. Soft Matter, 6(1), 6192-6199. http://dx.doi.org/10.1039/c0sm00800a.

24. Yallapu, M. M., Jaggi, M., & Chauhan, S. C. (2010). Beta-cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids and Surfaces. B, Biointerfaces, 79(1), 113-125. http://dx.doi.org/10.1016/j.colsurfb.2010.03.039. PMid:20456930.

25. Yallapu, M. M., Gupta, B. K., Jaggi, M., & Chauhan, S. C. (2010). Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. Journal of Colloid and Interface Science, 351(1), 19-29. http://dx.doi.org/10.1016/j.jcis.2010.05.022. PMid:20627257.

26. Dandekar, P. P., Jain, R., Patil, S., Dhumal, R., Tiwari, D., Sharma, S., Vanage, G., & Patravale, V. (2010). Curcumin-loaded hydrogel nanoparticles : Application in anti-malarial therapy and toxicological evaluation. Journal of Pharmaceutical Sciences, 99(12), 4992-5010. http://dx.doi.org/10.1002/jps.22191. PMid:20821383.

27. Sharma, M., Sharma, V., Panda, A. K., & Majumdar, D. K. (2011). Development of enteric submicron particle formulation of papain for oral delivery. International Journal of Nanomedicine, 6(1), 2097-2111. PMid:22114474.

28. Lu, X., & Weiss, R. A. (1992). Relationship between the glass transition temperature and the interaction parameter of miscible binary polymer blends. Macromolecules, 25(12), 3242-3246. http://dx.doi.org/10.1021/ma00038a033.

29. Silverstein, R. M., Webster, F. X., Kiemle, D., & Bryce, D. L. (2014). The spectrometric identification of organic compounds. New York: John Wiley & Sons.

30. Cavallaro, G., La Manna, G., Liveri, V. T. T., Aliotta, F., & Fontanella, M. E. (1995). structural investigation of water/lecithin/cyclohexane microemulsions by FT-IR spectroscopy. Journal of Colloid and Interface Science, 176(2), 281-285. http://dx.doi.org/10.1006/jcis.1995.9966.

31. Peres, L. B., Peres, L. B., Araújo, P. H. H., Sayer, C., & Gonçalves, O. H. (2015). Preparation of PLLA/PMMA and PLLA/PS binary blend nanoparticles by incorporation of PLLA in methyl methacrylate or styrene miniemulsion homopolymerization. Polímeros Ciência e Tecnologia, 25(1), 23-28. http://dx.doi.org/10.1590/0104-1428.1707.

32. Eguiburu, J. L., Iruin, J. J., Fernandez-Berridi, M. J., & San Román, J. (1998). Blends of amorphous and crystalline polylactides with poly (methyl methacrylate) and poly (methyl acrylate): a miscibility study. Polymer, 39(26), 6891-6897. http://dx.doi.org/10.1016/S0032-3861(98)00182-7.

33. Reddy, A. C. P., & Lokesh, B. R. (1994). Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Molecular and Cellular Biochemistry, 137(1), 1-8. http://dx.doi.org/10.1007/BF00926033. PMid:7845373.

34. Sreejayan, N., & Rao, M. N. (1994). Curcuminoids as potent inhibitors of lipid peroxidation. The Journal of Pharmacy and Pharmacology, 46(12), 1013-1016. http://dx.doi.org/10.1111/j.2042-7158.1994.tb03258.x. PMid:7714712.

35. Jovanovic, S. V., Steenken, S., Boone, C. W., & Simic, M. G. (1999). H-atom transfer is a preferred antioxidant mechanism of curcumin. Journal of the American Chemical Society, 121(41), 9677-9681. http://dx.doi.org/10.1021/ja991446m.

36. Zhu, Q. Y., Hackman, R. M., Ensunsa, J. L., Holt, R. R., & Keen, C. L. (2002). Antioxidative activities of oolong tea. Journal of Agricultural and Food Chemistry, 50(23), 6929-6934. http://dx.doi.org/10.1021/jf0206163. PMid:12405799.

37. Pan, Y., Tikekar, R. V., & Nitin, N. (2013). Effect of antioxidant properties of lecithin emulsifier on oxidative stability of encapsulated bioactive compounds. International Journal of Pharmaceutics, 450(1-2), 129-137. http://dx.doi.org/10.1016/j.ijpharm.2013.04.038. PMid:23618963.

38. Wang, Y., Lu, Z., Wu, H., & Lv, F. (2009). Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. International Journal of Food Microbiology, 136(1), 71-74. http://dx.doi.org/10.1016/j.ijfoodmicro.2009.09.001. PMid:19775769.
588371da7f8c9d0a0c8b4ab8 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections