Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2212
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Obtenção de espumas flexíveis de poliuretano com celulose de Pinus elliottii

Flexible polyurethane foams filled with Pinnus elliotti cellulose

Macedo, Vinícius de; Zimmermmann, Matheus Vinicius Gregory; Koester, Letícia Scherer; Scienza, Lisete Cristine; Zattera, Ademir José

Downloads: 0
Views: 1184

Resumo

Neste trabalho foram desenvolvidas espumas flexíveis de poliuretano com a adição de celulose de Pinus nas concentrações de 0,5; 1 e 2% (m/m). A celulose foi submetida ao processo de fibrilação mecânica e posterior secagem por aspersão (spray dry) sendo caracterizada quanto a sua morfologia por MEV e MET. As espumas foram produzidas pelo método de batelada (one-shot) com a adição e mistura da fibra junto ao poliol. As espumas foram caracterizadas por MEV, densidade aparente e resistência à compressão. Os principais resultados indicam que a fibrilação mecânica promove a obtenção de fibras em escala nanométrica, porém durante a secagem, ocorre aglomeração ocasionando aumento para escala micrométrica. As propriedades mecânicas da espuma obtiveram acréscimos de 40 e 50% na resistência à compressão com a adição de 0,5 e 1% de celulose, respectivamente, evidenciando seu potencial como aditivo alternativo para o desenvolvimento de espumas de poliuretano.

Palavras-chave

celulose, espuma, fibrilação, poliuretano, spray dry.

Abstract

In this work, flexible polyurethane foams were developed with the addition of Pinus cellulose at concentrations of 0.5; 1 and 2 wt%. The cellulose was subjected to mechanical fibrillation process and subsequent dried by spray dry process. It was characterized morphologically by SEM and TEM. The foams were produced by one-shot method by adding and mixing the fiber with the polyol. The foams were characterized by SEM, apparent density and compression strength. The main results indicate that the mechanical fibrillation promotes the obtainment of nanoscale fibers, but during the drying process, agglomeration occurs causing an increase reaching the micrometer scale. The mechanical properties of the foam increased by 40 and 50% in compressive strength with the addition of 0.5% and 1% of cellulose, respectively, showing its potential as an alternative additive for the development of polyurethane foams.

Keywords

cellulose, foam, fibrillation, polyurethane, spray-dry.

References

1. Madaleno, L., Pyrz, R., Crosky, A., Jensen, L. R., Rauhe, J. C. M., Dolomanova, V., Timmons, A. M. M. V. B., Pinto, J. J. C., & Norman, J. (2013). Processing and characterization of polyurethane nanocomposite foam reinforced with montmorillonite-carbon nanotube hybrids. Composites. Part A, Applied Science and Manufacturing, 44, 1-7. http://dx.doi.org/10.1016/j.compositesa.2012.08.015.

2. Çelebi, S., & Küçük, H. (2012). Acoustic properties of tea-leaf fiber mixed polyurethane composites. Cellular Polymers, 31(5), 241-255.

3. Seydibeyoğlu, M. Ö., & Oksman, K. (2008). Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Composites Science and Technology, 68(3-4), 908-914. http://dx.doi.org/10.1016/j.compscitech.2007.08.008.

4. Bahrambeygi, H., Rabbi, A., Nasouri, K., Shoushtari, A. M., & Babaei, M. R. (2013). Morphological and structural developments in nanoparticles/polyurethane foam nanocomposite’s synthesis and their effects on mechanical properties. Advances in Polymer Technology, 32(S1), E545-E555. http://dx.doi.org/10.1002/adv.21300.

5. Nikje, M. M. A., Moghaddam, S. T., Noruzian, M., Nejad, M. A. F., Shabani, K., Haghshenas, M., & Shakhesi, S. (2013). Preparation and characterization of flexible polyurethane foam nanocomposites reinforced by magnetic core-shell Fe3O4@APTS nanoparticles. Colloid & Polymer Science, 292(3), 627-633. http://dx.doi.org/10.1007/s00396-013-3099-2.

6. Mishra, D., & Sinha, V. K. (2013). Polyurethane foams from cellulosic waste and natural oil-based polyols: a modified approach. Polymers from Renewable Resources, 4(2), 85-107.

7. Navarro, M. V., Vega-Baudrit, J. R., Sibaja, M. R., & Melero, F. J. (2012). Use of rice husk as filler in flexible polyurethane foams. Macromolecular Symposia, 321-322(1), 202-207. http://dx.doi.org/10.1002/masy.201251136.

8. Elliott, J. A., Windle, A. H., Hobdell, J. R., Eeckhaut, G., Oldman, R. J., Ludwig, W., Boller, E., Cloetens, P., & Baruchel, J. (2002). In-situ deformation of an open-cell flexible polyurethane foam cgaracterised by 3D computed microtomography. Journal of Materials Science, 37(8), 1547-1555. http://dx.doi.org/10.1023/A:1014920902712.

9. Wolska, A., Goździkiewicz, M., & Ryszkowska, J. (2012). Influence of graphite and wood-based fillers on the flammability of flexible polyurethane foams. Journal of Materials Science, 47(15), 5693-5700. http://dx.doi.org/10.1007/s10853-012-6394-2.

10. Yuan, J., & Shi, S. (2009). Effect of the addition of wood flours on the properties of rigid polyurethane foam. Journal of Applied Polymer Science, 113(5), 2902-2909. http://dx.doi.org/10.1002/app.30322.

11. Mello, D., Pezzin, S. H., & Amico, S. C. (2009). The effect of post-consumer PET particles on the performance of flexible polyurethane foams. Polymer Testing, 28(7), 702-708. http://dx.doi.org/10.1016/j.polymertesting.2009.05.014.

12. Zimmermann, M. V. G., Turella, T. C., & Zattera, A. J. (2014). Influência do tratamento químico da fibra de bananeira em compósitos de poli(etileno-co-acetato de vinila) com e sem agente de expansão. Polímeros: Ciência e Tecnologia, 24(1), 58-64. http://dx.doi.org/10.4322/polimeros.2013.071.

13. Silva, M. C., Takahashi, J. A., Chaussy, D., Belgacem, M. N., & Silva, G. G. (2010). Composites of rigid polyurethane foam and cellulose fiber residue. Journal of Applied Polymer Science, 117(6), 3665-3672.

14. Fornasieri, M., Alves, J. W., Muniz, E. C., Ruvolo-filho, A., Otaguro, H., Rubira, A. F., & Carvalho, G. M. (2011). Synthesis and characterization of polyurethane composites of wood waste and polyols from chemically recycled pet. Composites. Part A, Applied Science and Manufacturing, 42(2), 189-195. http://dx.doi.org/10.1016/j.compositesa.2010.11.004.

15. Chen, X., Yuc, J., Zhang, Z., & Lu, C. (2011). Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydrate Polymers, 85(1), 245-250. http://dx.doi.org/10.1016/j.carbpol.2011.02.022.

16. Khalil, H. P. S. A., Davoudpour, Y., Islam, M. N., Mustapha, A., Sudesh, K., Dungani, R., & Jawaid, M. (2014). Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, 99, 649-665. PMid:24274556. http://dx.doi.org/10.1016/j.carbpol.2013.08.069.

17. Abe, K., & Yano, H. (2011). Formation of hydrogels from cellulose nanofibers. Carbohydrate Polymers, 85(4), 733-737. http://dx.doi.org/10.1016/j.carbpol.2011.03.028.

18. Jonoobi, M., Mathew, A. P., & Oksman, K. (2012). Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Industrial Crops and Products, 40, 232-238. http://dx.doi.org/10.1016/j.indcrop.2012.03.018.

19. Lavoine, N., Desloges, I., Dufresne, A., & Bras, J. (2012). Microfibrillated cellulose: its barrier properties and applications in cellulosic materials: a review. Carbohydrate Polymers, 90(2), 735-764. PMid:22839998. http://dx.doi.org/10.1016/j.carbpol.2012.05.026.

20. Missoum, K., Martoïa, F., Belgacem, M. N., & Bras, J. (2013). Effect of chemically modified nanofibrillated cellulose addition on the properties of fiber-based materials. Industrial Crops and Products, 48, 98-105. http://dx.doi.org/10.1016/j.indcrop.2013.04.013.

21. Siró, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose (London, England), 17(3), 459-494. http://dx.doi.org/10.1007/s10570-010-9405-y.

22. Afra, E., Yousefi, H., Hadilam, M. M., & Nishino, T. (2013). Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps. Carbohydrate Polymers, 97(2), 725-730. PMid:23911507. http://dx.doi.org/10.1016/j.carbpol.2013.05.032.

23. Floros, M., Hojabri, L., Abraham, E., Jose, J., Thomas, S., Pothan, L., Leao, A. L., & Narine, S. (2012). Enhancement of thermal stability, strength and extensibility of lipid-based polyurethanes with cellulose-based nanofibers. Polymer Degradation & Stability, 97(10), 1970-1978. http://dx.doi.org/10.1016/j.polymdegradstab.2012.02.016.

24. Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: a new family of nature-based materials. Angewandte Chemie, 50(24), 5438-5466. PMid:21598362. http://dx.doi.org/10.1002/anie.201001273.

25. Yousefi, H., Nishino, T., Shakeri, A., Faezipour, M., Ebrahimi, G., & Kotera, M. (2013). Water-repellent all-cellulose nanocomposite using silane coupling treatment. Journal of Adhesion Science and Technology, 27(12), 1324-1334. http://dx.doi.org/10.1080/01694243.2012.695954.

26. Peng, Y., Han, Y., & Gardner, D. J. (2012). Spray-drying cellulose nanofibrils: effect of drying parameters on particle morphology and size distribuition. Wood and Fiber Science, 44(4), 1-14.

27. Amin, M. C. I. M., Abadi, A. G. A., & Katas, H. (2014). Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Carbohydrate Polymers, 99(2), 180-189. PMid:24274495. http://dx.doi.org/10.1016/j.carbpol.2013.08.041.

28. Vartiainen, J., Pöhler, T., Sirola, K., Pylkkänen, L., Alenius, H., Hokkinen, J., Tapper, U., Lahtinen, P., Kapanen, A., Putkisto, K., Hiekkataipale, P., Eronen, P., Ruokolainen, J., & Laukkanen, A. (2011). Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose, 5(10), 775-786. http://dx.doi.org/10.1007/s10570-011-9501-7.

29. Paude, L. A., Worku, Z. A., Meeus, J., Guns, S., & Mooter, G. V. D. (2013). Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: Formulation and process considerations. International Journal of Pharmaceutics, 453(1), 253-284. PMid:22820134. http://dx.doi.org/10.1016/j.ijpharm.2012.07.015.

30. Oliveira, O. W., & Petrovick, P. R. (2010). Secagem por aspersão (spray drying) de extratos vegetais: bases e aplicações. Brazilian Journal of Pharmacognosy, 20(4), 641-650. http://dx.doi.org/10.1590/S0102-695X2010000400026.

31. Verdolotti, L., Salerno, A., Lamanna, R., Nunziata, A., Netti, P., & Iannace, S. (2012). A novel hybrid PU-alumina flexible foam with superior hydrophilicity and adsorption of carcinogenic compounds from tobacco smoke. Microporous and Mesoporous Materials, 151, 79-87. http://dx.doi.org/10.1016/j.micromeso.2011.11.010.

32. Jahanmardi, R., Kangarlou, B., & Dibazar, A. R. (2013). Effects of organically modified nanoclay on cellular morphology, tensile properties, and dimensional stability of flexible polyurethane foams. Journal of Nanostructure in Chemistry, 3(82), 1-6. http://dx.doi.org/10.1186/2193-8865-3-82.

33. Gu, R., Sain, M. M., & Konar, S. K. (2013). A feasibility study of polyurethane composite foam with added hardwood pulp. Industrial Crops and Products, 42, 273-279. http://dx.doi.org/10.1016/j.indcrop.2012.06.006.

34. Bernal, M. M., Lopez-Manchado, M. A., & Verdejo, R. (2011). In situ foaming evolution of flexible polyurethane foam nanocomposites. Macromolecular Chemistry and Physics, 212(9), 971-979. http://dx.doi.org/10.1002/macp.201000748.

35. Silva, V. R., Mosiewicki, M. A., Yoshida, M. I., Silva, M. C., Stefani, P. M., & Marcovich, N. E. (2013). Polyurethane foams based on modified tung oil and reinforced with rice husk ash I: synthesis and physical chemical characterization. Polymer Testing, 32(2), 438-445. http://dx.doi.org/10.1016/j.polymertesting.2013.01.002.

36. Jankowski, M., & Kotelko, M. (2010). Dynamic compression tests of a polyurethane flexible foam as a step in modelling impact of the head to the vehicle seat head restrain. FME Transactions, 38, 121-127.

37. Avalle, M., Belingardi, G., & Montanini, R. (2001). Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram. International Journal of Impact Engineering, 25(5), 455-472. http://dx.doi.org/10.1016/S0734-743X(00)00060-9.

5b7ac3260e8825be6b896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections