Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2196
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Thermo stabilisation of poly (butylene adipate-co-terephthalate)

Chaves, Rodrigo Paulino; Fechine, Guilhermino José Macêdo

Downloads: 2
Views: 237

Abstract

Poly (butylene adipate-co-terephthalate) - PBAT is a synthetic biodegradable polymer commonly used for plastic film production from neat polymer or nanocomposites. The PBAT is submitted to high temperatures and shear rate during its processing. In the present study, the thermo stabilisation of PBAT by the addition of two types of stabilisers was studied using a torque rheometer at 60 rpm and two levels of temperature. The stabilisers were used as master batches with a percentage of 10% by weight of additive in the PBAT. Molecular weight, torque values after 10 minutes of mixing, and absorbance at 400 nm were used to evaluate the process of stabilisation. The primary and secondary antioxidant used here had a positive effect on both processing temperatures, 180 and 200 °C. The best results indicate that the primary antioxidant could be used alone to protect PBAT against thermodegradation reactions.

Keywords

biodegradable polymer, poly (butylene adipate-co-terephthalate), thermo stabilisation.

References

1. Bastioli, C. (2005). Handbook of biodegradable polymers. United Kingdom: Rapra Technology.

2. Lee, S. M., Cho, D., Park, W. H., Lee, S. G., Han, S. O., & Drzal, L. T. (2005). Novel silk/poly(butylene succinate) biocomposites: the effect of short fibre content on their mechanical and thermal properties. Composites Science and Technology, 65(3-4), 647-657. http://dx.doi.org/10.1016/j.compscitech.2004.09.023.

3. Bordes, P., Pollet, E., & Avérous, L. (2009). Nano-biocomposites: Biodegradable polyester/nanoclay systems. Progress in Polymer Science, 34(2), 125-155. http://dx.doi.org/10.1016/j.progpolymsci.2008.10.002.

4. Baeyens, J., Brems, A., & Dewil, R. (2010). Recovery and recycling of post-consumer waste materials. Part 2. Target wastes (glass beverage bottles, plastics, scrap metal and steel cans, end-of-life tyres, batteries and household hazardous waste). International Journal of Sustainable Engineering, 3(4), 232-245. http://dx.doi.org/10.1080/19397038.2010.507885.

5. Coelho, T. M., Castro, R., & Gobbo, J. A., Jr (2011). PET containers in Brazil: Opportunities and challenges of a logistics model for post-consumer waste recycling. Resources, Conservation and Recycling, 55(3), 291-299. http://dx.doi.org/10.1016/j.resconrec.2010.10.010.

6. Chandra, R., & Rustgi, R. (1998). Biodegradable polymers. Progress in Polymer Science, 23(7), 1273-1335. http://dx.doi.org/10.1016/S0079-6700(97)00039-7.

7. Luckachan, G. E., & Pillai, C. K. S. (2011). Biodegradable polymers: a review on recent trends and emerging perspectives. Journal of Polymers and the Environment, 19(3), 637-676. http://dx.doi.org/10.1007/s10924-011-0317-1.

8. Amorin, N. S. Q. S., Rosa, G., Alves, J. F., Gonçalves, S. P. C., Franchetti, S. M. M., & Fechine, G. J. M. (2014). Study of thermodegradation and thermostabilization of poly(lactide acid) using subsequent extrusion cycles. Journal of Applied Polymer Science, 131(6), 1-8. http://dx.doi.org/10.1002/app.40023.

9. Bilck, A. P., Grossmann, M. V. E., & Yamashita, F. (2010). Biodegradable mulch films for strawberry production. Polymer Testing, 29(4), 471-476. http://dx.doi.org/10.1016/j.polymertesting.2010.02.007.

10. Al-Ltry, R., Lamnawara, K., & Maazouz, A. (2012). Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation & Stability, 97(10), 1898-1914. http://dx.doi.org/10.1016/j.polymdegradstab.2012.06.028.

11. Rabello, M. S., & White, J. R. (1997). Fotodegradação do polipropileno: um processo essencialmente heterogêneo. Polímeros: Ciência e Tecnologia, 7(2), 47-57. http://dx.doi.org/10.1590/S0104-14281997000200007.

12. Cáceres, C. A., & Canevarolo, S. V. (2008). Cisão de cadeia na degradação termo-mecânica do poliestireno sob múltiplas extrusões. Polímeros: Ciência e Tecnologia, 18(4), 348-352. http://dx.doi.org/10.1590/S0104-14282008000400015.

13. Timóteo, G. A. V., Fechine, G. J. M., & Rabello, M. S. (2007). Stress Cracking and Photodegradation: The Combination of Two Major Causes of HIPS Failure. Macromolecular Symposia, 258(1), 162-169. http://dx.doi.org/10.1002/masy.200751218.

14. Rabello, M. S., & De Paoli, M. (2013). Aditivação de termoplásticos, São Paulo: Artliber Editora Ltda.
588371d77f8c9d0a0c8b4aaf polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections