Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2193
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Preparation of novel magnetic polyurethane foam nanocomposites by using core-shell nanoparticles

Nikje, Mir Mohammed Alavi; Moghaddam, Sahebeh Tamaddoni; Noruzian, Maede

Downloads: 0
Views: 1139

Abstract

Iron oxide magnetic nanoparticles (NP's) converted to the core- shell structres by reacting with by n-(2-aminoethyl)-3-aminopropyl trimethoxysilane (AEAP) incorporated in polyurethane flexible (PUF) foam formulations. Fourier transform spectra, thermal gravimetric analysis, scanning electron images, thermo-mechanical analysis and magnetic properties of the prepared nanocomposites were studied. Obtained data shown that by the increasing of the amine modified magnetic iron oxide NP's up to 3% in the polymer matrix, thermal and magnetic properties improved in comparison with pristine foams. In addition, due to the presence of functional groups on the magnetic NP's surface, hard phases formation decrease in the bulk polymer and cause decreasing of glass transition temperature.

Keywords

magnetic iron oxide, magnetic nanoparticles, N-(2-aminoethyl)-3-aminopropyl trimethoxysilane (AEAP), Polyurethane flexible (PUF) foam.

References

1. Nikje, M. M. A., & Tehrani, Z. M. (2010). Polyurethane rigid foams reinforced by doubly modified nano silica. Journal of Cellular Plastics, 46(2), 159-172. http://dx.doi.org/10.1177/0021955X09350526.

2. Gao, X., Zhu, Y., Zhao, X., Wang, Z., An, D., Ma, Y., Guan, S., Du, Y., & Zhou, B. (2011). Synthesis and characterization of polyurethane/ SiO2 nanocomposites. Applied Surface Science, 257(10), 4719-4724. http://dx.doi.org/10.1016/j.apsusc.2010.12.138.

3. Shan, C. W., Idris, M. I., & Ghazali, M. I. (2012). Study of flexible polyurethane foams reinforced with coir fibres and tyre particles. International Journal of Applied Physics and Mathematics, 2(2), 123-130. http://dx.doi.org/10.7763/IJAPM.2012.V2.67.

4. Cinelli, P., Anguillesi, I., & Lazzeri, A. (2013). Green synthesis of flexible polyurethane foams from liquefied lignin. European Polymer Journal, 49(6), 1174-1184. http://dx.doi.org/10.1016/j.eurpolymj.2013.04.005.

5. Alavi Nikje, M. M., Farahmand Nejad, M., Shabani, K., & Haghshenas, M. (2013). Preparation of magnetic polyurethane rigid foam nanocomposites. Colloid & Polymer Science, 291(4), 903-909. http://dx.doi.org/10.1007/s00396-012-2808-6.

6. Nikje, M. M. A., & Tehrani, Z. M. (2010). Novel modified nanosilica-based on synthesized dipodal silane and its effects on the physical properties of rigid polyurethane foams. Designed Monomers and Polymers, 13(3), 249-260. http://dx.doi.org/10.1163/138577210X12634696333631.

7. Sant’Anna, S. S., Souza, D. A., Carvalho, C. F., & Yoshida, M. I. (2008). Morphological and thermal analyses of flexible polyurethane foams containing commercial calcium carbonate. Eclética Química, 33(1), 55-60. http://dx.doi.org/10.1590/S0100-46702008000200008.

8. Liu, T., Mao, L., Liu, F., Jiang, W., He, Z., & Fang, P. (2011). Preparation, structure, and properties of flexible polyurethane foams filled with fumed silica. Wuhan University Journal of Natural Sciences, 16(1), 29-32. http://dx.doi.org/10.1007/s11859-011-0706-2.

9. Bahrambeygi, H., Sabetzadeh, N., Rabbi, A., Nasouri, K., Shoushtari, A., & Babaei, M. (2013). Nanofibers (PU and PAN) and nanoparticles (Nanoclay and MWNTs) simultaneous effects on polyurethane foam sound absorption. Journal of Polymer Research, 20(2), 1-10. http://dx.doi.org/10.1007/s10965-012-0072-6.

10. Verdejo, R., Stämpfli, R., Alvarez-Lainez, M., Mourad, S., Rodriguez-Perez, M. A., Brühwiler, P. A., & Shaffer, M. (2009). Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes. Composites Science and Technology, 69(10), 1564-1569. http://dx.doi.org/10.1016/j.compscitech.2008.07.003.

11. Gao, X., Guo, Y., Tian, Y., Li, S., Zhou, S., & Wang, Z. (2011). Synthesis and characterization of polyurethane/zinc borate nanocomposites. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 384(1-3), 2-8. http://dx.doi.org/10.1016/j.colsurfa.2010.11.037.

12. Saha, M. C., Kabir, M. E., & Jeelani, S. (2008). Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles. Materials Science and Engineering A, 479(1-2), 213-222. http://dx.doi.org/10.1016/j.msea.2007.06.060.

13. Zhou, L., Li, G., An, T., & Li, Y. (2010). Synthesis and characterization of novel magnetic Fe3O4/polyurethane foam composite applied to the carrier of immobilized microorganisms for wastewater treatment. Research on Chemical Intermediates, 36(3), 277-288. http://dx.doi.org/10.1007/s11164-010-0134-5.

14. Cao, H., He, J., Deng, L., & Gao, X. (2009). Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core–shell nanoparticles via layer-by-layer method. Applied Surface Science, 255(18), 7974-7980. http://dx.doi.org/10.1016/j.apsusc.2009.04.199.

15. Chi Hao, L., Haji Badri, K., & Haji Ahmad, S. (2011). Mechanichal and thermal properties of palm-based polyurethane composites filled with Fe3O4, PANI and PANI/Fe3O4. Sains Malaysiana, 40(4), 373-378.

16. Morel, A. L., Nikitenko, S. I., Gionnet, K., Wattiaux, A., Lai-Kee-Him, J., Labrugere, C., Chevalier, B., Deleris, G., Petibois, C., Brisson, A., & Simonoff, M. (2008). Sonochemical approach to the synthesis of Fe3O4@SiO2 core-shell nanoparticles with tunable properties. ACS Nano, 2(5), 847-856. PMid:19206481. http://dx.doi.org/10.1021/nn800091q.

17. Lu, Y., Yin, Y., Mayers, B. T., & Xia, Y. (2002). Modifying the surface properties of superparamagnetic iron oxide nanoparticles throuth a sol-gel approach. Nano Letters, 2(3), 183-186. http://dx.doi.org/10.1021/nl015681q.

18. Ramos, J., Millán, A., & Palacio, F. (2000). Production of magnetic nanoparticles in a polyvinylpyridine matrix. Polymer, 41(24), 8461-8464. http://dx.doi.org/10.1016/S0032-3861(00)00272-X.

19. Shen, M., Cai, H., Wang, X., Cao, X., Li, K., Wang, S. H., Guo, R., Zheng, L., Zhang, G., & Shi, X. (2012). Facile one-pot preparation, surface functionalization, and toxicity assay of APTS-coated iron oxide nanoparticles. Nanotechnology, 23(10), 105601. http://dx.doi.org/10.1088/0957-4484/23/10/105601.

20. Nikje, M. M. A., & Tehrani, Z. M. (2010). Thermal and mechanical properties of polyurethane rigid foam/modified nanosilica composite. Polymer Engineering and Science, 5(3), 468-473. http://dx.doi.org/10.1002/pen.21559.

21. Feng, B., Hong, R. Y., Wang, L. S., Guo, L., Li, H. Z., Ding, J., Zheng, Y., & Wei, D. G. (2008). Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 328(1–3), 52-59. http://dx.doi.org/10.1016/j.colsurfa.2008.06.024.

22. Narine, S., Kong, X., Bouzidi, L., & Sporns, P. (2007). Physical Properties of Polyurethanes Produced from Polyols from Seed Oils: II. Foams. Journal of the American Oil Chemists’ Society, 84(1), 65-72. http://dx.doi.org/10.1007/s11746-006-1008-2.

23. Jalilian, M., Yeganeh, H., & Haghighi, M. N. (2008). Synthesis and properties of polyurethane networks derived from new soybean oil-based polyol and a bulky blocked polyisocyanate. Polymer International, 57(12), 1385-1394. http://dx.doi.org/10.1002/pi.2485.

24. Piszczyk, Ł., Strankowski, M., Danowska, M., Haponiuk, J. T., & Gazda, M. (2012). Preparation and characterization of rigid polyurethane–polyglycerol nanocomposite foams. European Polymer Journal, 48(10), 1726-1733. http://dx.doi.org/10.1016/j.eurpolymj.2012.07.001.
588371dc7f8c9d0a0c8b4ac1 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections