Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

The effect of gelatin amount on the properties of PLA/TPS/gelatin extruded sheets

Pizzoli, Ana Paula de Oliveira; Yamashita, Fabio; Gonçalves, Odinei Hess; Shirai, Marianne Ayumi; Leimann, Fernanda Vitória

Downloads: 1
Views: 981


Films and sheets composed by poly (lactic acid) (PLA)/thermoplastic starch (TPS) and TPS/gelatin blends have already been produced and characterized in the literature. However, materials produced with these three biopolymers have not been clearly investigated. In this work, extruded sheets were produced with PLA, TPS (glycerol as plasticizer) and different amounts of gelatin (0, 1, 3 and 5 wt%) in a pilot scale co-rotating twin-screw extruder coupled with a calender. The extruded sheets were characterized in regards to their water solubility, thickness, density, water vapor permeability (WVP), moisture sorption isotherms, mechanical properties and microstructure. The results showed an increase in solubility and WVP besides a decrease of about 30% in tensile strength, Young's modulus and elongation at break. Extruded sheets microstructure revealed smother surfaces and homogeneous morphology with the addition of gelatin. The experiments demonstrated that extrusion and calendering process is a viable way to produce PLA/TPS/gelatin sheets with interesting properties.


biodegradable polymers, extrusion-calendering, hydrophilicity, mechanical characterization, microstructure.


1. Bordes, P., Pollet, E., & Averous, L. (2009). Nano-biocomposites: biodegradable polyester/nanoclay systems. Progress in Polymer Science, 34(2), 125-155. http://dx.doi.org/10.1016/j.progpolymsci.2008.10.002.

2. Fortunati, E., Latterini, L., Rinaldi, S., Kenny, J. M., & Armentano, I. (2011). PLGA/Ag nanocomposites: in vitro degradation study and silver ion release. Journal of Materials Science. Materials in Medicine, 22(12), 2735-2744. PMid:22002470. http://dx.doi.org/10.1007/s10856-011-4450-0.

3. Liao, H.-T., & Wu, C.-S. (2009). Preparation and characterization of ternary blends composed of polylactide, poly(ɛ-caprolactone) and starch. Materials Science and Engineering A, 515(1-2), 207-214. http://dx.doi.org/10.1016/j.msea.2009.03.003.

4. Lescher, P., Jayaraman, K., & Bhattacharyya, D. (2012). Characterization of water-free thermoplastic starch blends for manufacturing processes. Materials Science and Engineering A, 532(1), 178-189. http://dx.doi.org/10.1016/j.msea.2011.10.079.

5. Luckachan, G. E., & Pillai, C. K. S. (2011). Biodegradable polymers: a review on recent trends and emerging perspectives. Journal of Polymers and the Environment, 19(3), 637-676. http://dx.doi.org/10.1007/s10924-011-0317-1.

6. Genkina, N. K., Kozlov, S. S., Martirosyan, V. V., & Kiseleva, V. I. (2014). Thermal behavior of maize starches with different amylose / amylopectin ratio studied by DSC analysis. Starch, 66(7-8), 1-7. http://dx.doi.org/10.1002/star.201300220.

7. Taghizadeh, A., Sarazin, P., & Favis, B. D. (2013). High molecular weight plasticizers in thermoplastic starch/polyethylene blends. Journal of Materials Science, 48(4), 1799-1811. http://dx.doi.org/10.1007/s10853-012-6943-8.

8. Cavallaro, G., La Manna, G., Liveri, V. T., Aliotta, F., & Fontanella, M. E. (1995). Structural investigation of water/lecithin/cyclohexane microemulsions by FT-IR spectroscopy. Journal of Colloid and Interface Science, 176(2), 281-285. http://dx.doi.org/10.1006/jcis.1995.9966.

9. Veiga-Santos, P., Oliveira, L. M., Cereda, M. P., & Scamparini, R. P. (2007). Sucrose and inverted sugar as plasticizer: effect on cassava starch-gelatin film mechanical properties, hydrophilicity and water activity. Food Chemistry, 103(2), 255-262. http://dx.doi.org/10.1016/j.foodchem.2006.07.048.

10. Fakhouri, F. M., Costa, D., Yamashita, F., Martelli, S. M., Jesus, R. C., Alganer, K., Collares-Queiroz, F. P., & Innocentini-Mei, L. H. (2013). Comparative study of processing methods for starch/gelatin films. Carbohydrate Polymers, 95(2), 681-689. PMid:23648030. http://dx.doi.org/10.1016/j.carbpol.2013.03.027.

11. Fakhouri, F. M., Fontes, L. C. B., Innocentini-Mei, L. H., & Collares-Queiroz, F. P. (2009). Effect of fatty acid addition on the properties of biopolymer films based on lipophilic maize starch and gelatin. Stärke, 61(9), 528-536. http://dx.doi.org/10.1002/star.200800217.

12. Fakhouri, F. M., Maria Martelli, S., Canhadas Bertan, L., Yamashita, F., Innocentini-Mei, L. H., & Collares-Queiroz, F. P. (2012). Edible films made from blends of manioc starch and gelatin: influence of different types of plasticizer and different levels of macromolecules on their properties. LWT - Food Science and Technology, 49(1), 149-154. http://dx.doi.org/10.1016/j.lwt.2012.04.017.

13. Liu, X., Wang, Y., Zhang, N., Shanks, R. A., Liu, H., Tong, Z., Chen, L., & Yu, L. (2014). Morphology and phase composition of gelatin-starch blends. Chinese Journal of Polymer Science, 32(1), 108-114. http://dx.doi.org/10.1007/s10118-014-1377-1.

14. Soares, F. C., Yamashita, F., Müller, C. M. O., & Pires, A. T. N. (2013). Thermoplastic starch/poly(lactic acid) sheets coated with cross-linked chitosan. Polymer Testing, 32(1), 94-98. http://dx.doi.org/10.1016/j.polymertesting.2012.09.005.

15. Shirai, M. A., Grossmann, M. V. E., Mali, S., Yamashita, F., Garcia, P. S., & Müller, C. M. O. (2013). Development of biodegradable flexible films of starch and poly (lactic acid) plasticized with adipate or citrate esters. Carbohydrate Polymers, 92(1), 19-22. PMid:23218260. http://dx.doi.org/10.1016/j.carbpol.2012.09.038.

16. Guzman-Sielicka, A., Janik, H., & Sielicki, P. (2013). Proposal of new starch-blends composition quickly degradable in marine environment. Journal of Polymers and the Environment, 21(3), 802-806. http://dx.doi.org/10.1007/s10924-012-0558-7.

17. Shirai, M. A., Müller, C. M. O., Grossmann, M. V. E., & Yamashita, F. (2015). Adipate and citrate esters as plasticizers for poly(lactic acid)/thermoplastic starch sheets. Journal of Polymers and the Environment, 23(1), 54-61. http://dx.doi.org/10.1007/s10924-014-0680-9.

18. Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2011). Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Industrial Crops and Products, 33(3), 605-610. http://dx.doi.org/10.1016/j.indcrop.2010.12.021.

19. American Society for Testing and Material – ASTM. (1996). E96-00: standard test methods for water vapor transmission of materials. West Conshohocken: ASTM.

20. American Society for Testing and Material – ASTM. (2002). D882-02: standard test methods for tensile properties of thin plastic sheeting. West Conshohocken: ASTM.

21. Choi, Y. S., Hong, S. R., Lee, Y. M., Song, K. W., Park, M. H., & Nam, Y. S. (1999). Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials, 20(5), 409-417. PMid:10204983. http://dx.doi.org/10.1016/S0142-9612(98)00180-X.

22. Zhang, N., Liu, X., Yu, L., Shanks, R., Petinaks, E., & Liu, H. (2013). Phase composition and interface of starch-gelatin blends studied by synchrotron FTIR micro-spectroscopy. Carbohydrate Polymers, 95(2), 649-653. PMid:23648025. http://dx.doi.org/10.1016/j.carbpol.2013.03.045.

23. Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2013). Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. Journal of Food Engineering, 114(3), 303-312. http://dx.doi.org/10.1016/j.jfoodeng.2012.08.005.

24. Chambi, H., & Grosso, C. (2006). Edible films produced with gelatin and casein cross-linked with transglutaminase. Food Research International, 39(4), 458-466. http://dx.doi.org/10.1016/j.foodres.2005.09.009.

25. Bertuzzi, M. A., Vidaurre, E. C., Armada, M., & Gottifredi, J. C. (2007). Water vapor permeability of edible starch based films. Journal of Food Engineering, 80(3), 972-978. http://dx.doi.org/10.1016/j.jfoodeng.2006.07.016.

26. Karnnet, S., Potiyaraj, P., & Pimpan, V. (2005). Preparation and properties of biodegradable stearic acid-modified gelatin films. Polymer Degradation & Stability, 90(1), 106-110. http://dx.doi.org/10.1016/j.polymdegradstab.2005.02.016.

27. Fiszman, S. M., Lluch, M. A., & Salvador, A. (1999). Effect of addition of gelatin on microstructure of acidic milk gels and yoghurt and on their rheological properties. International Dairy Journal, 9(12), 895-901. http://dx.doi.org/10.1016/S0958-6946(00)00013-3.

28. Al-Hassan, A. A., & Norziah, M. H. (2012). Starch–gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocolloids, 26(1), 108-117. http://dx.doi.org/10.1016/j.foodhyd.2011.04.015.

29. Jamshidian, M., Tehrany, E. A., Imran, M., Akhtar, M. J., Cleymand, F., & Desobry, S. (2012). Structural, mechanical and barrier properties of active PLA-antioxidant films. Journal of Food Engineering, 110(3), 380-389. http://dx.doi.org/10.1016/j.jfoodeng.2011.12.034.

30. Pereda, M., Ponce, A. G., Marcovich, R., Ruseckaite, A., & Martucci, J. F. (2011). Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids, 25(5), 1372-1381. http://dx.doi.org/10.1016/j.foodhyd.2011.01.001.

31. Turhan, K. N., & Şahbaz, F. (2004). Water vapor permeability, tensile properties and solubility of methylcellulose-based edible films. Journal of Food Engineering, 61(3), 459-466. http://dx.doi.org/10.1016/S0260-8774(03)00155-9.

32. Morillon, V., Debeaufort, F., Capelle, M., Blond, G., & Voilley, A. (2000). Influence of the physical state of water on the barrier properties of hydrophilic and hydrophobic films. Journal of Agricultural and Food Chemistry, 48(1), 11-16. PMid:10637042. http://dx.doi.org/10.1021/jf990809z.

33. Turhan, K. N., & Şahbaz, F. (2004). Water vapor permeability, tensile properties and solubility of methylcellulose-based edible films. Journal of Food Engineering, 61(3), 459-466. http://dx.doi.org/10.1016/S0260-8774(03)00155-9.

34. Abdillahi, H., Chabrat, E., Rouilly, A., & Rigal, L. (2013). Influence of citric acid on thermoplastic wheat flour/poly(lactic acid) blends. II. Barrier properties and water vapor sorption isotherms. Industrial Crops and Products, 50(1), 104-111. http://dx.doi.org/10.1016/j.indcrop.2013.06.028.

35. Godbillot, L., Dole, P., Joly, C., Roge, B., & Mathlouthi, M. (2006). Analysis of water binding in starch plasticized films. Food Chemistry, 96(3), 380-386. http://dx.doi.org/10.1016/j.foodchem.2005.02.054.

36. Müller, M. O. C., Pires, A. T. N., & Yamashita, F. (2012). Characterization of thermoplastic starch/poly(lactic acid) blends obtained by extrusion and thermopressing. Journal of the Brazilian Chemical Society, 23(3), 426-434. http://dx.doi.org/10.1590/S0103-50532012000300008.

37. Soares, F. C., Yamashita, F., Müller, C. M. O., & Pires, A. T. N. (2014). Effect of cooling and coating on thermoplastic starch/poly(lactic acid) blend sheets. Polymer Testing, 33(1), 34-39. http://dx.doi.org/10.1016/j.polymertesting.2013.11.001.

38. Mali, S., Sakanaka, L. S., Yamashita, F., & Grossmann, M. V. E. (2005). Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydrate Polymers, 60(3), 283-289. http://dx.doi.org/10.1016/j.carbpol.2005.01.003.

39. Brandelero, H., Grossmann, M. V., Yamashita, F. (2013). Hidrofilicidade de filmes de amido/poli(butileno adipato-co-tereftalato) (pbat) adicionados de tween 80 e óleo de soja. Polímeros: Ciência e Tecnologia, 23(2), 270-275. http://dx.doi.org/10.1590/S0104-14282013005000011.

40. Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2012). Composites of thermoplastic starch and nanoclays produced by extrusion and thermopressing. Carbohydrate Polymers, 89(2), 504-510. PMid:24750751. http://dx.doi.org/10.1016/j.carbpol.2012.03.035.

41. Zhao, X., Liu, W., & Yao, K. (2006). Preparation and characterization of biocompatible poly (L -lactic acid)/ gelatin blend membrane. Journal of Applied Polymer Science, 101(1), 269-276. http://dx.doi.org/10.1002/app.23292.

5b7afd500e88252e3c896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections