Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2178
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Rheological behavior of acrylic paint blends based on polyaniline

Sirqueira, Alex da Silva; Teodoro Júnior, Dermeval; Coutinho, Marcio da Silva; Silva Neto, Artur Soares da; Silva, Adriana dos Anjos; Soares, Bluma Guenther

Downloads: 1
Views: 660

Abstract

The rheological properties of acrylic paints and polyaniline (PAni) blends, with different contents of PAni doped by dodecyl benzene sulphonic acid (DBSA) and, dispersed by mechanical stirrer and ultrasonic, were investigated by controlled shear rate testing ramps. The results showed that the commercial acrylic paint had tended to deliver the required stability on the blends, in order to avoid sedimentation process. All samples exhibited non-Newtonian flow behavior (shear thinning), increasing PAni content the flow behavior index (n) decreased (0.41 to 0.11) and power law model were used to fitted the experimental curves. The results showed that the addition of PAni-DBSA affects the viscoelastic behavior of the mixtures due to the interactions between the components in the mixture. The best properties were obtained for samples 90/10 wt % dispersed by ultrasonic, indicating the feasibility of the usage as a conducting paint.

Keywords

polyaniline, acrylic paint, thixotropy.

References

1. Heeger, A. J., Saricifti, N. S., & Namdas, E. B. (2010). Semiconducting and metallic polymers (1st ed.). Oxford: Oxford University Press.

2. Bhadra, S., Khastgir, D., Singha, N. K., & Lee, J. H. (2009). Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science (Oxford), 34(8), 783-810. http://dx.doi.org/10.1016/j.progpolymsci.2009.04.003.

3. MacDiarmid, A. G. (2001). Synthetic metals: a novel role for organic polymers (Nobel Lecture). Angewandte Chemie International Edition, 40(14), 2581-2590. http://dx.doi.org/10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2. PMid:11458347.

4. Jamadade, V. S., Dhawale, D. S., & Lokhande, C. D. (2010). Studies on electrosynthesized leucoemeraldine, emeraldine and pernigraniline forms of polyaniline films and their supercapacitive behavior. Synthetic Metals, 160(9-10), 955-960. http://dx.doi.org/10.1016/j.synthmet.2010.02.007.

5. Sathiyanarayanan, S., Muthukrishnan, S., & Venkatachari, G. (2006). Performance of polyaniline pigmented vinyl acrylic coating on steel in aqueous solutions. Progress in Organic Coatings, 55(1), 5-10. http://dx.doi.org/10.1016/j.porgcoat.2005.09.002.

6. Sathiyanarayanan, S., Muthukrishnan, S., Venkatachari, G., & Trivedi, D. C. (2005). Corrosion protection of steel by polyaniline pigmented paint. Progress in Organic Coatings, 53(4), 297-301. http://dx.doi.org/10.1016/j.porgcoat.2005.03.007.

7. Seegmiller, J. C., Silva, J. E. P., Buttry, D. A., Torresi, S. I. C., & Torresi, R. M. (2005). Mechanism of action of corrosion protection coating for AA2024-T3 based on Poly(aniline)-Poly(methymethacrylate) blend corrosion, passivation and anodic films. Journal of the Electrochemical Society, 152, 45-53. http://dx.doi.org/10.1149/1.1839472.

8. Epstein, A. J., Smallfield, J. A., Guan, O. H., & Fahlman, M. (1999). Corrosion protection of aluminum and aluminum alloys by polyanilines: A potentiodynamic and photoelectron spectroscopy study. Synthetic Metals, 102(1-3), 1374-1376. http://dx.doi.org/10.1016/S0379-6779(98)00383-X.

9. Kinlen, P. J., Menon, V., & Ding, Y. (1999). Mechanistic investigation of polyaniline corrosion protection using the scanning reference electrodo technique. Journal of the Electrochemical Society, 146(10), 3690-3695. http://dx.doi.org/10.1149/1.1392535.

10. Shacklette, L. W., Miller, G. G., Elesenbaumer, R. L., Han, C., Webling, B. M., & Wessling, B. (1994). US Patent No 52.81363. Washington: U.S. Patent and Trademark Office.

11. Dhawan, S. K., Singh, N., & Venkatachalam, S. (2002). Shielding behavior of conducting polyaniline composites. Synthetic Metals, 129, 261-267. http://dx.doi.org/10.1016/S0379-6779(02)00079-6.

12. Zhu, J., Chen, M., Qu, H., Zhang, X., Wei, H., Luo, Z., Colorado, H. A., Wei, S., & Guo, Z. (2012). Interfacial polymerized polyaniline/graphite oxide nanocomposites toward electrochemical energy storage. Polymer, 53(25), 5953-5964. http://dx.doi.org/10.1016/j.polymer.2012.10.002.

13. Yilmaz, H., Zengin, H., & Unal, H. I. (2012). Synthesis and electrorheological properties of polyaniline/silicon dioxide composites. Journal of Materials Science, 47(13), 5276-5286. http://dx.doi.org/10.1007/s10853-012-6413-3.

14. Kumar, S., Singh, V., Aggarwal, S., & Mandal, U. K. (2009). Synthesis of 1-dimensional polyaniline nanofibers by reverse microemulsion. Colloid & Polymer Science, 287(9), 1107-1110. http://dx.doi.org/10.1007/s00396-009-2078-0.

15. Amaral, T. P., Barra, G. M. O., Barcia, F. L., & Soares, B. G. (2001). Polyaniline/Epoxy Resin Conducting Blend. Polímeros. Ciência e Tecnologia, 11, 149-157. http://dx.doi.org/10.1590/S0104-14282001000300015.

16. Valentová, H., & Stejskal, J. (2010). Mechanical properties of polyaniline. Synthetic Metals, 160(7-8), 832-834. http://dx.doi.org/10.1016/j.synthmet.2010.01.007.

17. Bhattacharya, A., & De, A. (1999). Conducting polymers in solution: progress toward processibility. Journal of Macromolecular Science Review. Macromolecular Chemistry and Physics, C39(1), 17-56. http://dx.doi.org/10.1081/MC-100101416.

18. Zhai, D., Liu, B., Shi, Y., Pan, L., Yaqun, W., Wenbo, L., Rong, Z., & Guihua, Y. (2013). Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures. ACS Nano, 7(4), 3540-3546. http://dx.doi.org/10.1021/nn400482d. PMid:23472636.

19. Barra, G. M. O., Matins, R. R., Kafer, K. A., Paniago, R., Vasques, C. T., & Pires, A. T. N. (2008). Thermoplastic elastomer/polyaniline blends: evaluation of mechanical and electromechanical properties. Polymer Testing, 27(7), 886-892. http://dx.doi.org/10.1016/j.polymertesting.2008.07.004.

20. Oueiny, C., Berlioz, S., & Perrin, F. X. (2014). Carbon nanotube: polyaniline composites. Progress in Polymer Science, 39(4), 707-748. http://dx.doi.org/10.1016/j.progpolymsci.2013.08.009.

21. Sudha, J. D., Sivakala, S., Prasanth, R., Reena, V. L., & Nair, P. R. (2009). Development of electromagnetic shielding materials from the conductive blends of polyaniline and polyaniline-clay nanocomposite EVA: Preparation and properties. Composites Science and Technology, 69(3-4), 358-364. http://dx.doi.org/10.1016/j.compscitech.2008.10.026.

22. Oyharçabal, M., Olingaa, T., Foulca, M. P., & Vigneras, V. (2012). Polyaniline/clay as nanostructured conductive filler for electrically conductive epoxy composites. Influence of filler morphology, chemical nature of reagents, and curing conditions on composite conductivity. Synthetic Metals, 162(7-8), 555-562. http://dx.doi.org/10.1016/j.synthmet.2012.02.011.

23. Navarchian, A. H., Joulazadeh, M., & Karimi, F. (2014). Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces. Progress in Organic Coatings, 77(2), 347-353. http://dx.doi.org/10.1016/j.porgcoat.2013.10.008.

24. Dhibar, S., Sahoo, S., Das, C. K., & Singh, R. (2013). Investigations on copper chloride doped polyaniline composites as efficient electrode materials for supercapacitor applications. Journal of Materials Science, 24, 576-585. http://dx.doi.org/10.1007/s10854-012-0800-z.

25. Garai, A., & Nandi, A. (2008). Rheology of (6)-camphor-10-sulfonic acid doped polyaniline-m-cresol conducting gel nanocomposites. Journal of Polymer Science. Part B, Polymer Physics, 46(1), 28-40. http://dx.doi.org/10.1002/polb.21339.

26. Gangopadhyay, R. (2008). Exploring rheological properties of aqueous polyaniline-PVP dispersion. Journal of Polymer Science. Part B, Polymer Physics, 46(22), 2443-2455. http://dx.doi.org/10.1002/polb.21574.

27. Gangopadhyay, R. (2009). Exploring properties of Polyaniline-SDS dispersion: a rheological approach. Journal of Colloid and Interface Science, 338(2), 435-443. http://dx.doi.org/10.1016/j.jcis.2009.06.050. PMid:19665141.

28. Schoff, C. K. (2005). Organic coatings: the paradoxical materials. Progress in Organic Coatings, 1(1), 21-27. http://dx.doi.org/10.1016/j.porgcoat.2004.05.001.

29. Plesu, N., Hiescu, S., Ilia, G., Popa, A., & Muntean, C. (2006). Rheology of polyaniline in acrylic resin. Turkish Journal of Chemistry, 30, 155-163. Retrieved in 17 April 2015, from http://journals.tubitak.gov.tr/chem/issues/kim-06-30-2/kim-30-2-4-0505-11.pdf

30. Soares, B. G., Leyva, M. E., Barra, G. M. O., & Khastgir, D. (2006). Dielectric behavior of polyaniline synthesized by different techniques. European Polymer Journal, 42(3), 676-686. http://dx.doi.org/10.1016/j.eurpolymj.2005.08.013.

31. Möginger, B. (1993). The determination of a general time creep compliance relation of linear viscoelastic materials under constant load and its extension to nonlinear viscoelastic behavior for the burger model. Rheologica Acta, 32, 370-379. http://dx.doi.org/10.1007/BF00435083.

32. Roussel, N. (2006). A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cement and Concrete Research, 36(10), 1797-1806. http://dx.doi.org/10.1016/j.cemconres.2006.05.025.

33. Posdorfer, J., & Wessling, B. (2001). Oxidation of copper in the presence of the organic metal polyaniline. Synthetic Metals, 119(1–3), 363-364. http://dx.doi.org/10.1016/S0379-6779(00)01393-X.

34. Barnes, H. A., Hutton, J. F., & Walters, K. (1989). An introduction to rheology. New York: Elsevier Applied Science.

35. Chacko, A. P., Hardaker, S. S., Gregory, R. V., & Samuels, R. J. (1997). Viscoelastic characterization of concentrated polyaniline solutions: new insights into conductive polymer processing. Synthetic Metals, 84(1-3), 41-45. http://dx.doi.org/10.1016/S0379-6779(97)80660-1.

36. Nguty, E., & Ekere, N. N. (2000). The rheological properties of solder and solar pastes and the effect on stencil printing. Rheologica Acta, 39(6), 607-612. http://dx.doi.org/10.1007/s003970000117.

37. Diez-Sales, O., Hernández, M. J., Casanova, A., & Herraez, M. (2007). Rheological characterization of chitosan matrices: influence of biopolymer concentration. Journal of Applied Polymer Science, 105(4), 2121-2128. http://dx.doi.org/10.1002/app.25577.

38. Fraioli, A. V. (1974). Yield values in thick-film rheology. Solid State Technology, 17, 48-50.

39. Krestser, R. G., & Boger, D. V. (2001). A structure model for time-dependent recovery of mineral suspension. Rheologica Acta, 40(6), 582-590. http://dx.doi.org/10.1007/s003970100180.

40 Coussot, P. Tabuteau, H., & Ovarlez, G. (2006). Aging as solid or liquid behavior in pastes. Journal of Rheology, 50, 975-994. http://dx.doi.org/10.1122/1.2337259

41. Sirqueira, A. S., Cardozo, Z. N., & Pinto, P. R. (2014). Rheology of acrylic paint. Acta Scientiae et Thecnicae, 2, 7-9. Retrieved in 17 April 2015, from http://www.uezo.rj.gov.br/ojs/index.php/ast/article/view/60
588371d97f8c9d0a0c8b4ab7 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections