Effect of oxidants and anionic surfactants on the morphology and permittivity of polypyrrole and its blends with epoxy resin
Campos, Regiane Aparecida Medeiros; Silva, Valdirene Aparecida da; Faez, Roselena; Rezende, Mirabel Cerqueira
http://dx.doi.org/10.1590/0104-1428.2169
Polímeros: Ciência e Tecnologia, vol.26, n3, p.197-206, 2016
Abstract
In this work, conductive polymers were prepared based on polypyrrole (PPy) and its blends with epoxy resin. The chemical syntheses of PPy used two oxidants (Fe2(SO4)3 and FeCl3.6H2O) and two surfactants (DBSNa and DBSA). PPy samples and their blends were characterized by scanning electron microscopy, electrical conductivity by four points, and measurements of complex parameters of electric permittivity (ε) and magnetic permeability, in the frequency range of 8.2 to 12.4 GHz. The micrographs of the fractured surfaces show that the PPy synthetized in the presence of surfactants has particles with smaller diameters, and the oxidant sulfate favored the formation of elongated structures, called fillets. The analysis of the blends found a homogeneous distribution of PPy clusters in epoxy resin matrix, which did not favor the electrical conductivity of these materials. On the other hand, the measurements of the complex parameters of the permittivity show that the blends have increasing values when the PPy concentration is increased in the epoxy resin.
Keywords
polypyrrole, anionic surfactants, permittivity, blends.
References
1. Santos, M. J. L., Brolo, A. G., & Girotto, E. M. (2007). Study of polaron and bipolaron states in polypyrrole by in situ Raman spectroelectrochemistry. Electrochimica Acta, 52(20), 6141-6145. http://dx.doi.org/10.1016/j.electacta.2007.03.070.
2. MacDiarmid, A. G., & Maxfield, M. (1987). Organic polymers as electroactive materials. Electrochemical Science and Technology of Polymers, 1, 67-102. http://dx.doi.org/10.1007/978-94-009-3413-9_4.
3. Diaz, A. F., Castillo, J. I., Logan, J. A., & Lee, W. Y. (1981). Electrochemistry of conducting polypyrrole films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 129(1-2), 115-132. http://dx.doi.org/10.1016/S0022-0728(81)80008-3.
4. Zoppi, R. A., & De Paoli, M.-A. (1996). Chemical preparation of conductive elastomeric blends: polypyrrole/EPDM–II: utilization of matrices containing crosslinking agents, reinforcement fillers and stabilizers. Polymer, 37(10), 1999-2009. http://dx.doi.org/10.1016/0032-3861(96)87318-6.
5. Faez, R., Martin, I. M., Rezende, M. C., & De Paoli, M.-A. (2001). Acompanhamento do processamento de elastômeros condutores por microscopia eletrônica de varredura. Polímeros: Ciência e Tecnologia, 11(3), 121-125. http://dx.doi.org/10.1590/S0104-14282001000300011.
6. Jonas, F., & Morrison, T. (1997). 3,4-Polyethylenedioxythiophene (PEDT): conductive coatings technical apllications and properties. Synthetic Metals, 85(1-3), 1397-1398. http://dx.doi.org/10.1016/S0379-6779(97)80290-1.
7. Biscaro, R. S., Rezende, M. C., & Faez, R. (2008). Influence of doped polyaniline on the interaction of Pu/PAni blends and on its microwave absorption properties. Polymers for Advanced Technologies, 19(2), 151-158. http://dx.doi.org/10.1002/pat.990.
8. Folgueras, L. C., Alves, M. A., & Rezende, M. C. (2010). Dielectric properties of microwave absorbing sheets produced with silicone and polyaniline. Materials Research, 13(2), 197-201. http://dx.doi.org/10.1590/S1516-14392010000200013.
9. Folgueras, L. C., Alves, M. A., & Rezende, M. C. (2010). Microwave absorbing paints and sheets based on carbonyl iron and polyaniline: measurement and simulation of their properties. Journal of Aerospace Technology and Management, 2(1), 63-70. http://dx.doi.org/10.5028/jatm.2010.02016370.
10. Campos, R. A. M., Faez, R., & Rezende, M. C. (2014). Síntese do polipirrol com surfactantes aniônicos visando aplicações como absorvedores de micro-ondas. Polímeros: Ciência e Tecnologia, 24(3), 351-359.
11. Panigrahi, R., & Srivastava, S. K. (2015). Trapping of microwave radiation in hollow polypyrrole microsphere through enhanced internal reflection: a novel approach. Scientific Reports, 5, 7638-7643. http://dx.doi.org/10.1038/srep07638. PMid:25560384.
12. Hosseini, S. H., & Asadnia, A. (2012). Synthesis, characterization, and microwave-absorbing properties of polypyrrole/MnFe2O4 nanocomposite. Journal of Nanomaterials, 2012, 1-6. http://dx.doi.org/10.1155/2012/198973.
13. Bhavsar, V., & Tripathi, D. (2014). Complex permittivity and microwave absorption studies of polypyrrole doped polyvinylchloride films. Advance in Electronic and Electric Engineering, 4(4), 417-424.
14. Chakraborty, H., Chabri, S., & Bhowmik, N. (2013). Electromagnetic interference reflectivity of nanostructured manganese ferrite reinforced polypyrrole composites. Transactions on Elextrical and Electronics Materials, 14(6), 295-298. http://dx.doi.org/10.4313/TEEM.2013.14.6.295.
15. Zoppi, R. A., & De Paoli, M.-A. (1995). Elastômeros condutores derivados de polipirrol e borracha de EPDM: preparação e propriedades. Polímeros: Ciência e Tecnologia, 5(3), 19-31.
16. Olmedo, L., Houquerbie, P., & Jousse, F. (1997). Handbook of organic conductive molecules and polymers. New York: John-Wiley.
17. Girotto, E. M., & Santos, I. A. (2002). Medidas de resistividade elétrica dc em sólidos: como efetuá-las corretamente. Quimica Nova, 25(4), 639-647. http://dx.doi.org/10.1590/S0100-40422002000400019.
18. Agilent Technologies. (2005). Materials measurement software Agilent. Califórnia: Agilent Technologies.
19. Agilent Technologies. (2007). Waveguide calibration in network analysis: accuracy enhancement. Califórnia: Agilent Technologies.
20. Pereira, J. J. (2007). Caracterização eletromagnética de materiais absorvedores de microondas via medidas de permissividade e permeabilidade complexas na banda X (Master's dissertation). Universidade de Taubaté, Taubaté.
21. Oliveira, S. R. (2006). Interação de ácido algínico com surfactantes catiônicos em solução aquosa (Doctoral thesis). Universidade Estadual Paulista “Júlio de Mesquita Filho”, São José do Rio Preto.
22. Su, S.-J., & Kuramoto, N. (2000). Synthesis of processable polyaniline complexed with anionic surfactant and its conducting blends in aqueous and organic system. Synthetic Metals, 108(2), 121-126. http://dx.doi.org/10.1016/S0379-6779(99)00185-X.
23. Kim, J., Kwon, S., & Ihm, D. (2007). Synthesis and characterization of organic soluble polyaniline prepared by one-step emulsion polymerization. Current Applied Physics, 7(2), 205-206. http://dx.doi.org/10.1016/j.cap.2006.05.001.
24. Abdiryim, T., Jamal, R., & Nurulla, I. (2007). Doping effect of organic sulphonic acids on the solid-state synthesized polyaniline. Journal of Applied Polymer Science, 105(2), 576-584. http://dx.doi.org/10.1002/app.26070.
25. Balanis, C. A. (2005). Advanced engineering electromagnetic. New York: John-Wiley.
26. Pozar, D. M. (2005). Microwave engineering. New York: John-Wiley.
27. Silva, S. M. L., Rezende, M. C., & Faro, A. J. O. Design of multilayer dielectric absorber material of microwave based on properties and interactions with signals of high frequency: one route of experimental analysis. Journal of Materials Research. In press.
2. MacDiarmid, A. G., & Maxfield, M. (1987). Organic polymers as electroactive materials. Electrochemical Science and Technology of Polymers, 1, 67-102. http://dx.doi.org/10.1007/978-94-009-3413-9_4.
3. Diaz, A. F., Castillo, J. I., Logan, J. A., & Lee, W. Y. (1981). Electrochemistry of conducting polypyrrole films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 129(1-2), 115-132. http://dx.doi.org/10.1016/S0022-0728(81)80008-3.
4. Zoppi, R. A., & De Paoli, M.-A. (1996). Chemical preparation of conductive elastomeric blends: polypyrrole/EPDM–II: utilization of matrices containing crosslinking agents, reinforcement fillers and stabilizers. Polymer, 37(10), 1999-2009. http://dx.doi.org/10.1016/0032-3861(96)87318-6.
5. Faez, R., Martin, I. M., Rezende, M. C., & De Paoli, M.-A. (2001). Acompanhamento do processamento de elastômeros condutores por microscopia eletrônica de varredura. Polímeros: Ciência e Tecnologia, 11(3), 121-125. http://dx.doi.org/10.1590/S0104-14282001000300011.
6. Jonas, F., & Morrison, T. (1997). 3,4-Polyethylenedioxythiophene (PEDT): conductive coatings technical apllications and properties. Synthetic Metals, 85(1-3), 1397-1398. http://dx.doi.org/10.1016/S0379-6779(97)80290-1.
7. Biscaro, R. S., Rezende, M. C., & Faez, R. (2008). Influence of doped polyaniline on the interaction of Pu/PAni blends and on its microwave absorption properties. Polymers for Advanced Technologies, 19(2), 151-158. http://dx.doi.org/10.1002/pat.990.
8. Folgueras, L. C., Alves, M. A., & Rezende, M. C. (2010). Dielectric properties of microwave absorbing sheets produced with silicone and polyaniline. Materials Research, 13(2), 197-201. http://dx.doi.org/10.1590/S1516-14392010000200013.
9. Folgueras, L. C., Alves, M. A., & Rezende, M. C. (2010). Microwave absorbing paints and sheets based on carbonyl iron and polyaniline: measurement and simulation of their properties. Journal of Aerospace Technology and Management, 2(1), 63-70. http://dx.doi.org/10.5028/jatm.2010.02016370.
10. Campos, R. A. M., Faez, R., & Rezende, M. C. (2014). Síntese do polipirrol com surfactantes aniônicos visando aplicações como absorvedores de micro-ondas. Polímeros: Ciência e Tecnologia, 24(3), 351-359.
11. Panigrahi, R., & Srivastava, S. K. (2015). Trapping of microwave radiation in hollow polypyrrole microsphere through enhanced internal reflection: a novel approach. Scientific Reports, 5, 7638-7643. http://dx.doi.org/10.1038/srep07638. PMid:25560384.
12. Hosseini, S. H., & Asadnia, A. (2012). Synthesis, characterization, and microwave-absorbing properties of polypyrrole/MnFe2O4 nanocomposite. Journal of Nanomaterials, 2012, 1-6. http://dx.doi.org/10.1155/2012/198973.
13. Bhavsar, V., & Tripathi, D. (2014). Complex permittivity and microwave absorption studies of polypyrrole doped polyvinylchloride films. Advance in Electronic and Electric Engineering, 4(4), 417-424.
14. Chakraborty, H., Chabri, S., & Bhowmik, N. (2013). Electromagnetic interference reflectivity of nanostructured manganese ferrite reinforced polypyrrole composites. Transactions on Elextrical and Electronics Materials, 14(6), 295-298. http://dx.doi.org/10.4313/TEEM.2013.14.6.295.
15. Zoppi, R. A., & De Paoli, M.-A. (1995). Elastômeros condutores derivados de polipirrol e borracha de EPDM: preparação e propriedades. Polímeros: Ciência e Tecnologia, 5(3), 19-31.
16. Olmedo, L., Houquerbie, P., & Jousse, F. (1997). Handbook of organic conductive molecules and polymers. New York: John-Wiley.
17. Girotto, E. M., & Santos, I. A. (2002). Medidas de resistividade elétrica dc em sólidos: como efetuá-las corretamente. Quimica Nova, 25(4), 639-647. http://dx.doi.org/10.1590/S0100-40422002000400019.
18. Agilent Technologies. (2005). Materials measurement software Agilent. Califórnia: Agilent Technologies.
19. Agilent Technologies. (2007). Waveguide calibration in network analysis: accuracy enhancement. Califórnia: Agilent Technologies.
20. Pereira, J. J. (2007). Caracterização eletromagnética de materiais absorvedores de microondas via medidas de permissividade e permeabilidade complexas na banda X (Master's dissertation). Universidade de Taubaté, Taubaté.
21. Oliveira, S. R. (2006). Interação de ácido algínico com surfactantes catiônicos em solução aquosa (Doctoral thesis). Universidade Estadual Paulista “Júlio de Mesquita Filho”, São José do Rio Preto.
22. Su, S.-J., & Kuramoto, N. (2000). Synthesis of processable polyaniline complexed with anionic surfactant and its conducting blends in aqueous and organic system. Synthetic Metals, 108(2), 121-126. http://dx.doi.org/10.1016/S0379-6779(99)00185-X.
23. Kim, J., Kwon, S., & Ihm, D. (2007). Synthesis and characterization of organic soluble polyaniline prepared by one-step emulsion polymerization. Current Applied Physics, 7(2), 205-206. http://dx.doi.org/10.1016/j.cap.2006.05.001.
24. Abdiryim, T., Jamal, R., & Nurulla, I. (2007). Doping effect of organic sulphonic acids on the solid-state synthesized polyaniline. Journal of Applied Polymer Science, 105(2), 576-584. http://dx.doi.org/10.1002/app.26070.
25. Balanis, C. A. (2005). Advanced engineering electromagnetic. New York: John-Wiley.
26. Pozar, D. M. (2005). Microwave engineering. New York: John-Wiley.
27. Silva, S. M. L., Rezende, M. C., & Faro, A. J. O. Design of multilayer dielectric absorber material of microwave based on properties and interactions with signals of high frequency: one route of experimental analysis. Journal of Materials Research. In press.