Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2124
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

Morais, Jaqueline Albano de; Gadioli, Renan; Paoli, Marco-Aurelio De

Downloads: 0
Views: 388

Abstract

Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate), EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

Keywords

fibers, impact behavior, mechanical testing, extrusion

References

1. Netravali, A. N., & Chabba, S. (2003). Composites get greener. Materials Today, 6(4), 22-29. http://dx.doi.org/10.1016/S1369-7021(03)00427-9.

2. Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose based fibers. Progress in Polymer Science, 24(2), 221-274. http://dx.doi.org/10.1016/S0079-6700(98)00018-5.

3. Pandey, J. K., Ahn, S. H., Lee, C. S., Mohanty, A. K., & Misra, M. (2010). Recent advances in the application of natural fiber based composites. Macromolecular Materials and Engineering, 295(11), 975-989. http://dx.doi.org/10.1002/mame.201000095.

4. Tomczak, F., Satyanarayana, K. G., & Sydenstricker, T. H. D. (2007). Studies on lignocellulosic fibers of Brazil: Part III – Morphology and properties of Brazilian curauá fibers. Composites. Part A, Applied Science and Manufacturing, 38(10), 2227-2236. http://dx.doi.org/10.1016/j.compositesa.2007.06.005.

5. Spinacé, M. A. S., Lambert, C. S., Fermoselli, K. K. G., & De Paoli, M. A. (2009). Characterization of lignocellulosic Curaua fibres. Carbohydrate Polymers, 77(1), 47-53. http://dx.doi.org/10.1016/j.carbpol.2008.12.005.

6. Araujo, J. R., Mano, B., Teixeira, G. M., Spinacé, M. A. S., & De Paoli, M. A. (2010). Biomicrofibrilar composites of high density polyethylene reinforced with Curauá fibers: Mechanical, interfacial and morphological properties. Composites Science and Technology, 70(11), 1637-1644. http://dx.doi.org/10.1016/j.compscitech.2010.06.006.

7. Mano, B., Araujo, J. R., Spinacé, M. A. S., & De Paoli, M. A. (2010). Polyolefin composites with curaua fibres: Effect of the processing conditions on mechanical properties, morphology and fibres dimensions. Composites Science and Technology, 70(1), 29-35. http://dx.doi.org/10.1016/j.compscitech.2009.09.002.

8. Gutiérrez, M. C., De Paoli, M. A., & Felisberti, M. I. (2012). Biocomposites based on cellulose acetate and short Curauá fibers: Effect of plasticizers and chemical treatments of the fibers. Composites. Part A, Applied Science and Manufacturing, 43(8), 1338-1346. http://dx.doi.org/10.1016/j.compositesa.2012.03.006.

9. Mano, B., Araujo, J. R., Waldman, W. R., Spinacé, M. A. S., & De Paoli, M. A. (2013). Mechanical properties, morphology and thermal degradation of a biocomposite of polypropylene and Curauá fibers: coupling agent effect. Polímeros: Ciência e Tecnologia, 23, 161-168. http://dx.doi.org/10.4322/S0104-14282013005000025.

10. Spinace, M. A. S., Fermoselli, K. K. G., & De Paoli, M. A. (2009). Recycled polypropylene reinforced with Curauá fibers by extrusion. Journal of Applied Polymer Science, 112(6), 3686-3694. http://dx.doi.org/10.1002/app.29683.

11. Santos, P. A., Spinacé, M. A. S., Fermoselli, K. K. G., & De Paoli, M. A. (2009). Efeito da forma de processamento e do tratamento da fibra de curauá nas propriedades de compósitos com poliamida-6. Polímeros: Ciência e Tecnologia, 19(1), 31-39. http://dx.doi.org/10.1590/S0104-14282009000100010.

12. Bader, M. G. (1994). Short fibre reinforced thermoplastics. In F. R. Jones. Handbook of polymer-fibre composites (pp. 275-277). Essex: Longman Scientific and Technical. http://dx.doi.org/10.1002/pat.1995.220060807.

13. Spinace, M. A. S., Janeiro, L. G., Bernardino, F. C., Grossi, T. A., & De Paoli, M. A. (2011). Polyolefins reinforced with short vegetal fibers: Sisal vs. Curauá. Polímeros: Ciência e Tecnologia, 21, 168-174. http://dx.doi.org/10.1590/S0104-14282011005000036.

14. Castro, D. O., Ruvolo-Filho, A., & Frollini, E. (2012). Materials prepared from biopolyethylene and curaua fibers: composites from biomass. Polymer Testing, 31(7), 880-888. http://dx.doi.org/10.1016/j.polymertesting.2012.05.011.

15. Rana, A. K., Mandal, A., & Bandyopadhyay, S. (2003). Bandyopadhyay S.: Short jute fiber reinforced polypropylene composites: effect of compatibilizer, impact modifier and fiber loading. Composites Science and Technology, 63(6), 801-806. http://dx.doi.org/10.1016/S0266-3538(02)00267-1.

16. Rabello, M., & De Paoli, M.-A. (2013). Aditivação de termoplásticos. São Paulo: Artliber.

17. Faker, M., Razavi Aghjeh, M. K., Ghaffari, M., & Seyyedi, S. A. (2008). Rheology, morphology and mechanical properties of polyethylene/ethylene vinyl acetate copolymer (PE/EVA) blends. European Polymer Journal, 44(6), 1834-1842. http://dx.doi.org/10.1016/j.eurpolymj.2008.04.002.

18. Khonakdar, H. A., Wagenknecht, U., Jafari, S. H., Hässler, R., & Eslami, H. (2004). Dynamic mechanical properties and morphology of polyethylene/ethylene vinyl acetate copolymer blends. Advances in Polymer Technology, 23(4), 307-315. http://dx.doi.org/10.1002/adv.20019.

19. Khonakdar, H. A., Jafari, S. H., Yavari, A., Asadinezhad, A., & Wagenknecht, U. (2005). Rheology, Morphology and estimation of interfacial tension of LDPE/EVA and HDPE/EVA blends. Polymer Bulletin, 54(1-2), 75-84. http://dx.doi.org/10.1007/s00289-005-0365-6.

20. Araujo, J. R., Waldman, W. R., & De Paoli, M. A. (2008). Thermal properties of high density polyethylene composites with natural fibres: Coupling agent effect. Polymer Degradation & Stability, 93(10), 1770-1775. http://dx.doi.org/10.1016/j.polymdegradstab.2008.07.021.

21. McNeill, I. C. (1997). Thermal degradation mechanisms of some addition polymers and copolymers. Journal of Analytical and Applied Pyrolysis, 40-41, 21-41. http://dx.doi.org/10.1016/S0165-2370(97)00006-5.

22. Ausias, G., Bourmaud, A., Coroller, G., & Baley, C. (2013). Study of the fibre morphology stability in polypropylene-flax composites. Polymer Degradation & Stability, 98(6), 1216-1224. http://dx.doi.org/10.1016/j.polymdegradstab.2013.03.006.

23. Albano, C., Gonzalez, J., Ichazo, M., & Kaiser, D. (1999). Thermal stability of blends of polyolefins and sisal fiber. Polymer Degradation & Stability, 66(2), 179-190. http://dx.doi.org/10.1016/S0141-3910(99)00064-6.
588371d67f8c9d0a0c8b4aa7 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections