Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Poly(lactic acid)/thermoplastic starch sheets: effect of adipate esters on the morphological, mechanical and barrier properties

Shirai, Marianne Ayumi; Olivato, Juliana Bonametti; Demiate, Ivo Mottin; Müller, Carmen Maria Olivera; Grossmann, Maria Victória Eiras; Yamashita, Fabio

Downloads: 0
Views: 264


Blends of poly(lactic acid) (PLA) and thermoplastic starch (TPS) plasticized with adipate esters (diisodecyl adipate and diethyl adipate) having different molecular weight were used to produce sheets. The calendering-extrusion process at a pilot scale was used, and the mechanical, barrier, and morphological characterization of the obtained materials were performed. The increase in the TPS content affected the mechanical properties of the sheets by increasing the elongation and decreasing the rigidity. TPS conferred a more hydrophilic character to the sheets, as observed from the water vapor permeability results. The sheets plasticized with diisodecyl adipate (DIA), having a higher molecular weight, had better mechanical and barrier properties than diethyl adipate (DEA) plasticized sheets, indicating that DIA was more effective as plasticizer. Micrographs obtained by confocal laser microscopy and scanning electron microscopy showed different morphologies when different proportions of PLA and TPS were used (dispersed or co-continuous structures), which were strongly associated with the mechanical and barrier properties.


biodegradable material, polymeric blend, plasticizer, mechanical properties.


1. Bastos, D. C., Santos, A. E. F., Silva, M. L. V. J., & Simão, R. A. (2009). Hydrophobic corn starch thermoplastic films produced by plasma treatment. Ultramicroscopy, 109(8), 1089-1093. http://dx.doi.org/10.1016/j.ultramic.2009.03.031. PMid:19345017.

2. Avérous, L., Fringant, C., & Moro, L. (2001). Plasticized starch-cellulose interaction in polysaccharide composites. Polymer, 42(15), 6565-6572. http://dx.doi.org/10.1016/S0032-3861(01)00125-2.

3. Liu, H., Xie, F., Yu, L., Chen, L., & Li, L. (2009). Thermal processing of starch-based polymers. Progress in Polymer Science, 34(12), 1348-1368. http://dx.doi.org/10.1016/j.progpolymsci.2009.07.001.

4. Zullo, R., & Iannace, S. (2009). The effects of different starch sources and plasticizers on film blowing of thermoplastic starch: Correlation among process, elongational properties and macromolecular structure. Carbohydrate Polymers, 77(2), 376-383. http://dx.doi.org/10.1016/j.carbpol.2009.01.007.

5. Li, H., & Huneault, M. A. (2011). Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends. Journal of Applied Polymer Science, 119(4), 2439-2448. http://dx.doi.org/10.1002/app.32956.

6. Abdillahi, H., Chabrat, E., Rouilly, A., & Rigal, L. (2013). Influence of citric acid on thermoplastic wheat flour / poly(lactic acid) blends. II. Barrier properties and water vapour sorption isotherms. Industrial Crops and Products, 50, 104-111. http://dx.doi.org/10.1016/j.indcrop.2013.06.028.

7. Martin, O., & Averous, L. (2001). Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209-6219. http://dx.doi.org/10.1016/S0032-3861(01)00086-6.

8. Babu, R. P., O’Connor, K., & Seeram, R. (2013). Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2(8), 1-16. http://dx.doi.org/10.1186/2194-0517-2-8.

9. Jacobsen, S., & Fritz, H. G. (1999). Plasticizing polylactide: The effect of different plasticizers on the mechanical properties. Polymer Engineering and Science, 39(7), 1303-1310. http://dx.doi.org/10.1002/pen.11517.

10. Bhardwaj, R., & Mohanty, A. K. (2007). Advances in the properties of polylactides based materials: a review. Journal of Biobased Materials Bioenergy, 1(2), 191-209. http://dx.doi.org/10.1166/jbmb.2007.023.

11. Anderson, K. S., Schreck, K. M., & Hillmyer, M. (2008). Toughening polylactide. Polymer Reviews, 48(1), 85-108. http://dx.doi.org/10.1080/15583720701834216.

12. Zhang, J. F., & Sun, X. Z. (2004). Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules, 5(4), 1446-1451. http://dx.doi.org/10.1021/bm0400022. PMid:15244463.

13. Wang, N., Yu, J., Chang, P. R., & Ma, X. (2008). Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends. Carbohydrate Polymers, 71(1), 109-118. http://dx.doi.org/10.1016/j.carbpol.2007.05.025.

14. Kozlowski, M., Masirek, R., Piorkowska, M., & Gazicki-Lipman, M. (2007). Biodegradable blends of poly(L-lactide) and starch. Journal of Applied Polymer Science, 105(1), 269-277. http://dx.doi.org/10.1002/app.26088.

15. Lim, L. T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. http://dx.doi.org/10.1016/j.progpolymsci.2008.05.004.

16. Ke, T., Sun, S. X., & Seib, P. (2003). Blending of Poly(lactic acid) and starches containing varying amylose content. Journal of Applied Polymer Science, 89(13), 3639-3646. http://dx.doi.org/10.1002/app.12617.

17. Jang, W. Y., Shin, B. Y., Lee, T. J., & Narayan, R. (2007). Thermal properties and morphology of biodegradable PLA/starch compatibilized blends. Journal of Industrial and Engineering Chemistry, 13(3), 457-464. Retrieved in 22 February 2015, from http://infosys.korea.ac.kr/research/tech/periodicals/view.php?seq=581012

18. Shin, B. Y., Jang, S. H., & Kim, B. S. (2011). Thermal, morphological, and mechanical properties of biobased and biodegradable blends of poly(lactic acid) and chemically modified thermoplastic starch. Polymer Engineering and Science, 51(5), 826-834. http://dx.doi.org/10.1002/pen.21896.

19. Huneault, M. A., & Li, H. (2007). Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer, 48(1), 270-280. http://dx.doi.org/10.1016/j.polymer.2006.11.023.

20. Park, J. W., Im, S. S., Kim, S. H., & Kim, Y. H. (2000). Biodegradable polymer blends of poly(L-lactic acid) and gelatinized starch. Polymer Engineering and Science, 40(12), 2539-2550. http://dx.doi.org/10.1002/pen.11384.

21. Xiong, Z., Yang, Y., Feng, J., Zhang, X., Zhang, C., Tang, Z., & Zhu, J. (2013). Preparation and characterization of poly(lactic acid)/ starch composites toughened with epoxidized soybean oil. Carbohydrate Polymers, 92(1), 810-816. http://dx.doi.org/10.1016/j.carbpol.2012.09.007. PMid:23218370.

22. Shirai, M. A., Grossmann, M. V. E., Mali, S., Yamashita, F., Garcia, P. S., & Müller, C. M. O. (2013). Development of biodegradable flexible films of starch and poly(lactic acid) plasticizes with adipate or citrate esters. Carbohydrate Polymers, 92(1), 19-22. http://dx.doi.org/10.1016/j.carbpol.2012.09.038. PMid:23218260.

23. Shirai, M. A., Müller, C. M. O., Grossmann, M. V. E., & Yamashita, F. (2015). Adipate and citrate esters as plasticizers for poly(lactic acid) / thermoplastic starch sheets. Journal of Polymer and Environment, 23(1), 54-61. http://dx.doi.org/10.1007/s10924-014-0680-9.

24. Martino, V. P., Ruseckaite, R. A., Jiménez, A., & Averous, L. (2010). Correlation between composition, structure and properties of poly(lactic acid)/polyadipate-based nano-biocomposites. Macromolecular Materials and Engineering, 295(6), 551-558. http://dx.doi.org/10.1002/mame.200900351.

25. Martino, V. P., Jiménez, A., & Ruseckaite, R. A. (2009). Processing and characterization of poly(lactic acid) films plasticized with commercial adipates. Journal of Applied Polymer Science, 112(4), 2010-2018. http://dx.doi.org/10.1002/app.29784.

26. American Society for Testing and Material – ASTM. (2002). D882-02: Standard test methods for tensile properties of thin plastic sheeting. Philadelphia: ASTM.

27. American Society for Testing and Material – ASTM. (1996). E96-00: Standard test methods for water vapor transmission of materials. Philadelphia: ASTM.

28. Schwach, E., & Avérous, L. (2004). Starch-based biodegradable blends: morphology and interface properties. Polymer International, 53(12), 2115-2124. http://dx.doi.org/10.1002/pi.1636.

29. Müller, C. M. O., Pires, A. T. N., & Yamashita, F. (2012). Characterization of thermoplastic starch/poly(lactic acid) blends obtained by extrusion and thermopressing. Journal of the Brazilian Chemical Society, 23(3), 426-434. http://dx.doi.org/10.1590/S0103-50532012000300008.

30. Soares, F. C., Yamashita, F., Müller, C. M. O., & Pires, A. T. N. (2014). Effect of cooling and coating on thermoplastic starch/poly(lactic acid) blend sheets. Polymer Testing, 33, 34-39. http://dx.doi.org/10.1016/j.polymertesting.2013.11.001.

31. Karagoz, S., & Ozkoc, G. (2013). Effects of diisocyanate compatibilizer on the properties of citric acid modified thermoplastic starch / poly(lactic acid) blends. Polymer Engineering and Science, 53(10), 2183-2193. http://dx.doi.org/10.1002/pen.23478.

32. Khalil, F., Galland, S., Cottaz, A., Joly, C., & Degraeve, P. (2014). Polybutylene succinate adipate/starch blends: A morphological study for the design of controlled release films. Carbohydrate Polymers, 108, 271-280. http://dx.doi.org/10.1016/j.carbpol.2014.02.062. PMid:24751274.

33. Xiong, Z., Li, C., Ma, S., Feng, J., Yang, Y., Zhang, R., & Zhu, J. (2013). The properties of poly(lactic acid)/starch blends with a functionalized plant oil: Tung oil anhydride. Carbohydrate Polymers, 95(1), 77-84. http://dx.doi.org/10.1016/j.carbpol.2013.02.054. PMid:23618242.

34. Teixeira, E. M., Curvelo, A. A. S., Corrêa, A. C., Marconcini, J. M., Glenn, G. M., & Mattoso, L. H. C. (2012). Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly(lactic acid). Industrial Crops and Products, 37(1), 61-68. http://dx.doi.org/10.1016/j.indcrop.2011.11.036.

35. Alves, V. D., Mali, S., Beléia, A., & Grossmann, M. V. E. (2007). Effect of glycerol and amylose enrichment on cassava starch film properties. Journal of Food Engineering, 78(3), 941-946. http://dx.doi.org/10.1016/j.jfoodeng.2005.12.007.

36. Mali, S., Sakanaka, L. S., Yamashita, F., & Grossmann, M. V. E. (2005). Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydrate Polymers, 60(3), 283-289. http://dx.doi.org/10.1016/j.carbpol.2005.01.003.

37. Jamshidian, M., Tehrany, E. A., Cleymand, F., Leconte, S., Falher, T., & Desobry, S. (2012). Effects of synthetic phenolic antioxidants on physical, structural, mechanical and barrier properties of poly lactic acid film. Carbohydrate Polymers, 87(2), 1763-1773. http://dx.doi.org/10.1016/j.carbpol.2011.09.089.
588371d47f8c9d0a0c8b4a9f polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections