Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Incorporation of Aloe vera extract in bacterial nanocellulose membranes

Lya Piaia; Camila Quinetti Paes Pittella; Samara Silva de Souza; Fernanda Vieira Berti; Luismar Marques Porto

Downloads: 0
Views: 66


Nanocellulose (BNC) is a natural polymer produced by bacteria. Its structure has only glucose monomer, it has various properties such as high water holding capacity, unique nanostructure, high crystallinity and high mechanical strength. Pure BNC or in combination with different components can be used for a wide range of applications. Aloe vera is a medicinal plant with polysaccharides in its composition that has a potential for tissue regeneration and repair. The aim of this study was to evaluate the effect of incorporating Aloe vera (A. vera) into BNC membranes produced with three fractions of A. vera extract (BNC-Aloe) on the behavior of epithelial cells. Human fibroblasts and keratinocytes were shown to have increased metabolic activity and proliferation when cultured on BNC-Aloe membranes compared to control. Quantification of collagen biosynthesis was significantly higher in BNC-Aloe membranes. In conclusion, BNC-Aloe membranes are suggested as a material for the purpose of skin tissue repair.


tissue engineering, nanocellulose, Aloe vera, fibroblasts, keratinocytes


1 Lin, W., Lien, C., Yeh, H., Yu, C., & Hsu, S. (2013). Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydrate Polymers, 94(1), 603-611. http://dx.doi.org/10.1016/j.carbpol.2013.01.076. PMid:23544580.

2 Pang, M., Huang, Y., Meng, F., Zhuang, Y., Liu, H., Du, M., Ma, Q., Wang, Q., Chen, Z., Chen, L., Cai, T., & Cai, Y. (2020). Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal, 122, 109365. http://dx.doi.org/10.1016/j.eurpolymj.2019.109365.

3 Souto, L. R. M., Rehder, J., Vassallo, J., Cintra, M. L., Kraemer, M. H. S., & Puzzi, M. B. (2006). Model for human skin reconstructed in vitro composed of associated dermis and epidermis. Sao Paulo Medical Journal, 124(2), 71-76. http://dx.doi.org/10.1590/S1516-31802006000200005. PMid:16878189.

4 Souto, L. R. M., Vassallo, J., Rehder, J., Pinto, G. A., & Puzzi, M. B. (2009). Immunoarchitectural characterization of a human skin model reconstructed in vitro. Sao Paulo Medical Journal, 127(1), 28-33. http://dx.doi.org/10.1590/S1516-31802009000100007. PMid:19466292.

5 Bell, E., Sher, S., Hull, B., Merrill, C., Rosen, S., Chamson, A., Asselineau, D., Dubertret, L., Coulomb, B., Lapiere, C., Nusgens, B., & Neveux, Y. (1983). The reconstitution of living skin. The Journal of Investigative Dermatology, 81(Suppl. 1), 2S-10S. http://dx.doi.org/10.1111/1523-1747.ep12539993. PMid:6306115.

6 Grøn, B., Stoltze, K., Andersson, A., & Dabelsteen, E. (2002). Oral fibroblasts produce more HGF and KGF than skin fibroblasts in response to co-culture with keratinocytes. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 110(12), 892-898. http://dx.doi.org/10.1034/j.1600-0463.2002.1101208.x. PMid:12645668.

7 Sayag, J., Lieaume, S., & Bohbot, S. (1996). Healing properties of calcium alginate dressings. Journal of Wound Care, 5(8), 357-362. http://dx.doi.org/10.12968/jowc.1996.5.8.357. PMid:27935753.

8 Koide, M., Osaki, K., Konishi, J., Oyamada, K., Katakura, T., Takahashi, A., & Yoshizato, K. (1993). A new type of biomaterial for artificial skin: dehydrothermally cross-linked composites of fibrillar and denatured collagens. Journal of Biomedical Materials Research, 27(1), 79-87. http://dx.doi.org/10.1002/jbm.820270111. PMid:8421002.

9 Badylak, S. F. (2007). The extracellular matrix as a biologic scaffold material. Biomaterials, 28(25), 3587-3593. http://dx.doi.org/10.1016/j.biomaterials.2007.04.043. PMid:17524477.

10 Brown, R. M., Jr., & Montezinos, D. (1976). Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 73(1), 143-147. http://dx.doi.org/10.1073/pnas.73.1.143. PMid:1061108.

11 Rambo, C. R., Recouvreux, D. O. S., Carminatti, C. A., Pitlovanciv, A. K., Antônio, R. V., & Porto, L. M. (2008). Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Materials Science and Engineering C, 28(4), 549-554. http://dx.doi.org/10.1016/j.msec.2007.11.011.

12 Recouvreux, D. O. S., Carminatti, C. A., Pitlovanciv, A. K., Rambo, C. R., Porto, L. M., & Antônio, R. V. (2008). Cellulose biosynthesis by the beta-proteobacterium, Chromobacterium violaceum. Current Microbiology, 57(5), 469-476. http://dx.doi.org/10.1007/s00284-008-9271-0. PMid:18820969.

13 Souza, S. S., Berti, F. V., Oliveira, K. P. V., Pittella, C. Q. P., Castro, J. V., Pelissari, C., Rambo, C. R., & Porto, L. M. (2019). Nanocellulose biosynthesis by Komagataeibacter hansenii in a defined minimal culture medium. Cellulose, 26(3), 1641-1655. http://dx.doi.org/10.1007/s10570-018-2178-4.

14 Sperotto, G., Stasiak, L. G., Godoi, J. P. M. G., Gabiatti, N. C., & Souza, S. S. (2021). A review of culture media for bacterial cellulose production: complex, chemically defined and minimal media modulations. Cellulose, 28(5), 2649-2673. http://dx.doi.org/10.1007/s10570-021-03754-5.

15 Anton-Sales, I., Beekmann, U., Laromaine, A., Roig, A., & Kralisch, D. (2019). Opportunities of bacterial cellulose to treat epithelial tissues. Current Drug Targets, 20(8), 808-822. http://dx.doi.org/10.2174/1389450120666181129092144. PMid:30488795.

16 Rahman, S., Carter, P., & Bhattarai, N. (2017). Aloe vera for tissue engineering applications. Journal of Functional Biomaterials, 8(1), 6. http://dx.doi.org/10.3390/jfb8010006. PMid:28216559.

17 Tanaka, M., Yamada, M., Toida, T., & Iwatsuki, K. (2012). Safety evaluation of supercritical carbon dioxide extract of Aloe vera gel. Journal of Food Science, 77(1), T2-T9. http://dx.doi.org/10.1111/j.1750-3841.2011.02452.x. PMid:22260137.

18 Godinho, J. F., Berti, F. V., Müller, D., Rambo, C. R., & Porto, L. M. (2016). Incorporation of Aloe vera extracts into nanocellulose during biosynthesis. Cellulose(1), 23, 545-555. http://dx.doi.org/10.1007/s10570-015-0844-3.

19 Davis, R. H., Donato, J. J., Hartman, G. M., & Haas, R. C. (1994). Anti-inflammatory and wound healing activity of a growth substance in Aloe vera. Journal of the American Podiatric Medical Association, 84(2), 77-81. http://dx.doi.org/10.7547/87507315-84-2-77. PMid:8169808.

20 Kang, M., Kim, S. Y., Kim, Y. T., Kim, E., Lee, S., Ko, S., Wijesinghe, W. A. J. P., Samarakoon, K. W., Kim, Y., Cho, J. H., Jang, H., & Jeon, Y. (2014). In vitro and in vivo antioxidant activities of polysaccharide purified from aloe vera (Aloe barbadensis) gel. Carbohydrate Polymers, 99, 365-371. http://dx.doi.org/10.1016/j.carbpol.2013.07.091. PMid:24274519.

21 Sierra-García, G. D., Castro-Ríos, R., González-Horta, A., Lara-Arias, J., & Chávez-Montes, A. (2014). Acemannan, an extracted polysaccharide from Aloe vera: a literature review. Natural Product Communications, 9(8), 1217-1221. http://dx.doi.org/10.1177/1934578X1400900836. PMid:25233608.

22 Chithra, P., Sajithlal, G. B., & Chandrakasan, G. (1998). Influence of Aloe vera on the glycosaminoglycans in the matrix of healing dermal wounds in rats. Journal of Ethnopharmacology, 59(3), 179-186. http://dx.doi.org/10.1016/S0378-8741(97)00112-8. PMid:9507902.

23 Boudreau, M. D., & Beland, F. A. (2006). An evaluation of the biological and toxicological properties of Aloe barbadensis (miller), Aloe vera. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 24(1), 103-154. http://dx.doi.org/10.1080/10590500600614303. PMid:16690538.

24 Saibuatong, O., & Phisalaphong, M. (2010). Novo Aloe vera-bacterial cellulose composite film from biosynthesis. Carbohydrate Polymers, 79(2), 455-460. http://dx.doi.org/10.1016/j.carbpol.2009.08.039.

25 Stumpf, T. R., Pértile, R. A. N., Rambo, C. R., & Porto, L. M. (2013). Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes. Materials Science and Engineering C, 33(8), 4739-4745. http://dx.doi.org/10.1016/j.msec.2013.07.035. PMid:24094182.

26 Moniri, M., Moghaddam, A. B., Azizi, S., Rahim, R. A., Ariff, A. B., Saad, W. Z., Navaderi, M., & Mohamad, R. (2017). Production and status of bacterial cellulose in biomedical engineering. Nanomaterials, 7(9), 257. http://dx.doi.org/10.3390/nano7090257. PMid:32962322.

27 Berti, F. V., Rambo, C. R., Dias, P. F., & Porto, L. M. (2013). Nanofiber density determines endothelial cell behavior on hydrogel matrix. Materials Science and Engineering C, 33(8), 4684-4691. http://dx.doi.org/10.1016/j.msec.2013.07.029. PMid:24094176.

28 Silva, A. R. P., Paula, A. C. C., Martins, T. M. M., Goes, A. M., & Pereria, M. M. (2014). Synergistic effect between bioactive glass foam and a perfusion bioreactor on osteogenic differentiation of human adipose stem cells. Journal of Biomedical Materials Research, Part A, 102(3), 818-827. http://dx.doi.org/10.1002/jbm.a.34758. PMid:23625853.

29 Godinho, J. (2014). Hidrogéis de celulose bacteriana incorporados com frações de Aloe vera (Dissertação de Mestrado). Universidade Federal de Santa Catarina, Santa Catarina, Brasil.

30 Piaia, L., Paes, C. Q., & Porto, L. M. (2014). Viability of human dermal fibroblasts cultured on bacterial cellulose and Aloe vera composites. BMC Proceedings, 8(4), 61. http://dx.doi.org/10.1186/1753-6561-8-S4-P61.

31 Dayal, M. S., & Catchmark, J. M. (2016). Mechanical and structural property analysis of bacterial cellulose composites. Carbohydrate Polymers, 144, 447-453. http://dx.doi.org/10.1016/j.carbpol.2016.02.055. PMid:27083837.

32 Murphy, C. M., & O’Brien, F. J. (2010). Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhesion & Migration, 4(3), 377-381. http://dx.doi.org/10.4161/cam.4.3.11747. PMid:20421733.

33 Fu, L., Zhang, J., & Yang, G. (2013). Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydrate Polymers, 92(2), 1432-1442. http://dx.doi.org/10.1016/j.carbpol.2012.10.071. PMid:23399174.

34 Tokoh, C., Takabe, K. J., & Fujita, M. (2002). Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose, 9(1), 65-74. http://dx.doi.org/10.1023/A:1015827121927.

35 Petersen, A., Princ, A., Korus, G., Ellinghaus, A., Leemhuis, H., Herrera, A., Klaumünzer, A., Schreivogel, S., Woloszyk, A., Schmidt-Bleek, K., Geissler, S., Heschel, I., & Duda, G. N. (2018). A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects. Nature Communications, 9(1), 4430. http://dx.doi.org/10.1038/s41467-018-06504-7. PMid:30361486.

36 Carter, P., Rahman, S. M., & Bhattarai, N. (2016). Facile fabrication of Aloe vera containing PCL nanofibers for barrier membrane application. Journal of Biomaterials Science. Polymer Edition, 27(7), 692-708. http://dx.doi.org/10.1080/09205063.2016.1152857. PMid:26878323.

37 McAnalley, B. H., Carpenter, R. H., & McDaniel, H. R. (1995). US 5468737A. USA. Retrieved in 2021, December 20, from http://www.google.com/patents/US5468737.

38 Atiba, A., Nishimura, M., Kakinuma, S., Hiraoka, T., Goryo, M., Shimada, Y., Ueno, H., & Uzuka, Y. (2011). Aloe vera oral administration accelerates acute radiation-delayed wound healing by stimulating transforming growth factor-β and fibroblast growth factor production. American Journal of Surgery, 201(6), 809-818. http://dx.doi.org/10.1016/j.amjsurg.2010.06.017. PMid:21396624.

39 Deters, A., Dauer, A., Schnetz, E., Fartasch, M., & Hensel, A. (2001). High molecular compounds (polysaccharides and proanthocyanidins) from Hamamelis virginiana bark: influence on human skin keratinocyte proliferation and differentiation and influence on irritated skin. Phytochemistry, 58(6), 949-958. http://dx.doi.org/10.1016/S0031-9422(01)00361-2. PMid:11684194.

40 Bell, E., Parenteau, N., Gay, R., Nolte, C., Kemp, P., Bilbo, P., Ekstein, B., & Johnson, E. (1991). The living skin equivalent: its manufacture, its organotypic properties and its responses to irritants. Toxicology In Vitro, 5(5-6), 591-596. http://dx.doi.org/10.1016/0887-2333(91)90099-Y. PMid:20732083.

41 Silva, S. S., Oliveira, M. B., Mano, J. F., & Reis, R. L. (2014). Bio-inspired Aloe vera sponges for biomedical applications. Carbohydrate Polymers, 112, 264-270. http://dx.doi.org/10.1016/j.carbpol.2014.05.042. PMid:25129743.

42 Jettanacheawchankit, S., Sasithanasate, S., Sangvanich, P., Banlunara, W., & Thunyakitpisal, P. (2009). Acemannan stimulates gingival fibroblast proliferation; expressions of keratinocyte growth factor-1, vascular endothelial growth factor, and type I collagen; and wound healing. Journal of Pharmacological Sciences, 109(4), 525-531. http://dx.doi.org/10.1254/jphs.08204FP. PMid:19372635.

43 Boonyagul, S., Banlunara, W., Sangvanich, P., & Thunyakitpisal, P. (2014). Effect of acemannan, an extracted polysaccharide from Aloe vera, on BMSCs proliferation, differentiation, extracellular matrix synthesis, mineralization, and bone formation in a tooth extraction model. Odontology, 102(2), 310-317. http://dx.doi.org/10.1007/s10266-012-0101-2. PMid:23315202.

62c5cfdba953952c754346d3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections