Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Effect of hollow glass microspheres addition on density reduction and mechanical properties of PA6/glass fibers composites

Thaysa Rodrigues Mendes Ferreira; Matheus de Alencar Lechtman; Filipe Lauro Dias; Aline Bruna da Silva

Downloads: 2
Views: 642


The strategy of combining the traditional reinforcement of glass fibers (GF) with lighter hollow glass microspheres (HGM) can afford to fulfill the need for potential light-weight and high-strength modern materials required in various sectors, such as automotive and aerospace industry applications. This work fabricated composites of PA6/GF/HGM by melting blending in a co-rotating twin-screw extruder, and subsequently, injection molded. The effects of HGM content on the density, morphological and mechanical properties were investigated and the PA6/GF/HGM composites properties were compared to the properties of the traditional PA6/GF (70/30) wt% composite, widely used today in automotive industries. With the increase of HGM amount in the formulations, a reduction of between 3 and 12% in density was achieved with a slight reduction in its mechanical properties, showing that this new strategy can be applied to replace the PA6/GF (70/30) wt% composite, providing a considerable weight reduction for these materials.


polyamide composites, glass microspheres, glass fibers, density eduction, weight reduction


1 Plocher, J., & Panesar, A. (2019). Review on design and structural optimisation in additive manufacturing: towards next-generation lightweight structures. Materials & Design, 183, 108164. http://dx.doi.org/10.1016/j.matdes.2019.108164.

2 Akampumuza, O., Wambua, P. M., Ahmed, A., Li, W., & Qin, X.-H. (2016). Review of the applications of biocomposites in the automotive industry. Polymer Composites, 38(11), 2553-2569. http://dx.doi.org/10.1002/pc.23847.

3 Vyncke, G., Fiorio, R., Cardon, L., & Ragaert, K. (2020). The effect of polyethylene on the properties of talc-filled recycled polypropylene. Plastics, Rubber and Composites, 1-8. http://dx.doi.org/10.1080/14658011.2020.1807729.

4 Awan, M. O., Shakoor, A., Rehan, M. S., & Gill, Y. Q. (2021). Development of HDPE composites with improved mechanical properties using calcium carbonate and NanoClay. Physica B, Condensed Matter, 606, 412568. http://dx.doi.org/10.1016/j.physb.2020.412568.

5 Ohayon-Lavi, A., Buzaglo, M., Ligati, S., Peretz-Damari, S., Shachar, G., Pinsk, N., Riskin, M., Schatzberg, Y., Genish, I., & Regev, O. (2020). Compression-enhanced thermal conductivity of carbon loaded polymer composites. Carbon, 163, 333-340. http://dx.doi.org/10.1016/j.carbon.2020.03.026.

6 Aseer, J. R., Deka, K., Kumar, S., Muralidharan, S., & Sharma, A. (2016). Effect of fiber content on mechanical properties of Glass Fiber Reinforced Polymer (GFRP) composites. Journal of Material Science and Mechanical Engineering, 3(3), 239-242. Retrieved in 2021, August 13, from https://krishisanskriti.org/vol_image/10Jun201609063744%20%20%20%20%20%20J%20%20Ronald%20Aseer%20%20%20%20%20%20%20%20%20%20%20239-242%20%20%20%20%20%20%20%201.pdf

7 Anandakumar, P., Timmaraju, M. V., & Velmurugan, R. (2021). Development of efficient short/continuous fiber thermoplastic composite automobile suspension upper control arm. Materials Today: Proceedings, 39(Pt 4), 1187-1191. http://dx.doi.org/10.1016/j.matpr.2020.03.543.

8 Papageorgiou, D. G., Kinloch, I. A., & Young, R. J. (2016). Hybrid multifunctional graphene/glass-fibre polypropylene composites. Composites Science and Technology, 137, 44-51. http://dx.doi.org/10.1016/j.compscitech.2016.10.018.

9 Ravishankar, B., Nayak, S. K., & Kader, M. A. (2019). Hybrid composites for automotive applications – A review. Journal of Reinforced Plastics and Composites, 38(18), 835-845. http://dx.doi.org/10.1177/0731684419849708.

10 Jang, K.-S. (2020). Low-density polycarbonate composites with robust hollow glass microspheres by tailorable processing variables. Polymer Testing, 84, 106408. http://dx.doi.org/10.1016/j.polymertesting.2020.106408.

11 Ding, J., Liu, Q., Zhang, B., Ye, F., & Gao, Y. (2020). Preparation and characterization of hollow glass microsphere ceramics and silica aerogel/hollow glass microsphere ceramics having low density and low thermal conductivity. Journal of Alloys and Compounds, 831, 154737. http://dx.doi.org/10.1016/j.jallcom.2020.154737.

12 Jiao, C., Wang, H., Li, S., & Chen, X. (2017). Fire hazard reduction of hollow glass microspheres in thermoplastic polyurethane composites. Journal of Hazardous Materials, 332, 176-184. http://dx.doi.org/10.1016/j.jhazmat.2017.02.019. PMid:28324711.

13 Liang, J. Z., & Li, F. H. (2006). Measurement of thermal conductivity of hollow glass-bead-filled polypropylene composites. Polymer Testing, 25(4), 527-531. http://dx.doi.org/10.1016/j.polymertesting.2006.02.007.

14 Zhang, Z., Jiang, H., Li, R., Gao, S., Wang, Q., Wang, G., Ouyang, X., & Wei, H. (2020). High-damping polyurethane/hollow glass microspheres sound insulation materials: preparation and characterization. Journal of Applied Polymer Science, 138(10), 49970. http://dx.doi.org/10.1002/app.49970.

15 Awais, H., Nawab, Y., Anjang, A., Akil, H. M., & Abidin, M. S. Z. (2020). Mechanical properties of continuous natural fibres (Jute, Hemp, Flax) reinforced polypropylene composites modified with hollow glass microspheres. Fibers and Polymers, 21(9), 2076-2083. http://dx.doi.org/10.1007/s12221-020-2260-z.

16 Borges, T. E., Almeida, J. H. S., Jr., Amico, S. C., & Amado, F. D. R. (2016). Hollow glass microspheres/piassava fiber-reinforced homo- and co-polypropylene composites: preparation and properties. Polymer Bulletin, 74(6), 1979-1993. http://dx.doi.org/10.1007/s00289-016-1819-8.

17 Bourry, D., & Favis, B. D. (1998). Morphology development in a polyethylene/polystyrene binary blend during twin-screw extrusion. Polymer, 39(10), 1851-1856. http://dx.doi.org/10.1016/S0032-3861(97)00397-2.

18 Pandey, V., Chen, H., Ma, J., & Maia, J. M. (2021). Extension-dominated improved dispersive mixing in single-screw extrusion. Part 2: comparative analysis with twin-screw extruder. Journal of Applied Polymer Science, 138(5), 49765. http://dx.doi.org/10.1002/app.49765.

19 Wilson, G. F., & Eckstein, Y. (1991). US Patent No. 5017629A. Akron, Ohio: The BF Goodrich Company. Retrieved in 2021, August 13, from https://patents.google.com/patent/US5017629A/en?oq=+5%2c017%2c629

20 Shira, S., & Buller, C. (2015). Mixing and dispersion of hollow glass microsphere products. In: Amos, S. E., & Yalcin, B., editors. Hollow glass microspheres for plastics, elastomers, and adhesives compounds (pp. 241-271). USA: Elsevier Inc. http://dx.doi.org/10.1016/B978-1-4557-7443-2.00011-6.

21 Kim, S., Wu, H., Devega, A., Sico, M., Fahy, W., Misasi, J., Dickens, T., & Koo, J. H. (2020). Development of polyetherimide composites for use as 3D printed thermal protection material. Journal of Materials Science, 55(22), 9396-9413. http://dx.doi.org/10.1007/s10853-020-04676-6.

22 Özbay, B., & Serhatlı, E. (2020). Processing and characterization of hollow glass-filled polyamide 12 composites by selective laser sintering method. Materials Technology, 1-11. http://dx.doi.org/10.1080/10667857.2020.1824149.

23 Ksouri, I., De Almeida, O., & Haddar, N. (2017). Long term ageing of polyamide 6 and polyamide 6 reinforced with 30% of glass fibers: physicochemical, mechanical and morphological characterization. Journal of Polymer Research, 24(8), 133. http://dx.doi.org/10.1007/s10965-017-1292-6.

24 Caputo, F., Lamanna, G., De Luca, A., & Armentani, E. (2020). Thermo-mechanical investigation on an automotive engine encapsulation system made of fiberglass reinforced polyamide PA6 GF30 material. Macromolecular Symposia, 389(1), 1900100. http://dx.doi.org/10.1002/masy.201900100.

25 Berman, A., DiLoreto, E., Moon, R. J., & Kalaitzidou, K. (2020). Hollow glass spheres in sheet molding compound composites: limitations and potential. Polymer Composites, 42(3), 1279-1291. http://dx.doi.org/10.1002/pc.25900.

26 Lai, C.-C., Chen, S.-Y., Chen, M.-H., Chen, H.-L., Hsiao, H.-T., Liu, L.-C., & Chen, C.-M. (2019). Preparation and characterization of heterocyclic polyamide 6 (PA 6) with high transparencies and low hygroscopicities. Journal of Molecular Structure, 1175, 836-843. http://dx.doi.org/10.1016/j.molstruc.2018.08.032.

27 Yoo, D.-Y., Kim, S., Park, G.-J., Park, J.-J., & Kim, S.-W. (2017). Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites. Composite Structures, 174, 375-388. http://dx.doi.org/10.1016/j.compstruct.2017.04.069.

28 Yazici, Ş., Inan, G., & Tabak, V. (2007). Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Construction & Building Materials, 21(6), 1250-1253. http://dx.doi.org/10.1016/j.conbuildmat.2006.05.025.

29 Hu, Y., Mei, R., An, Z., & Zhang, J. (2013). Silicon rubber/hollow glass microsphere composites: influence of broken hollow glass microsphere on mechanical and thermal insulation property. Composites Science and Technology, 79, 64-69. http://dx.doi.org/10.1016/j.compscitech.2013.02.015.

30 Yoo, Y., Spencer, M. W., & Paul, D. R. (2011). Morphology and mechanical properties of glass fiber reinforced Nylon 6 nanocomposites. Polymer, 52(1), 180-190. http://dx.doi.org/10.1016/j.polymer.2010.10.059.

31 Doumbia, A. S., Bourmaud, A., Jouannet, D., Falher, T., Orange, F., Retoux, R., Le Pluart, L., & Cauret, L. (2015). Hollow microspheres – poly-(propylene) blends: relationship between microspheres degradation and composite properties. Polymer Degradation & Stability, 114, 146-153. http://dx.doi.org/10.1016/j.polymdegradstab.2014.12.024.

32 Carvalho, G. B., Canevarolo, S. V., Jr., & Sousa, J. A. (2020). Influence of interfacial interactions on the mechanical behavior of hybrid composites of polypropylene / short glass fibers / hollow glass beads. Polymer Testing, 85, 106418. http://dx.doi.org/10.1016/j.polymertesting.2020.106418.

33 Kumar, N., Mireja, S., Khandelwal, V., Arun, B., & Manik, G. (2016). Light-weight high-strength hollow glass microspheres and bamboo fiber based hybrid polypropylene composite: a strength analysis and morphological study. Composites. Part B, Engineering, 109, 277-285. http://dx.doi.org/10.1016/j.compositesb.2016.10.052.

34 Bauer, P., Becker, Y. N., Motsch-Eichmann, N., Mehl, K., Müller, I., & Hausmann, J. (2020). Hybrid thermoset-thermoplastic structures: an experimental investigation on the interface strength of continuous fiber-reinforced epoxy and short-fiber reinforced polyamide 6. Composites Part C: Open Access, 3, 100060. http://dx.doi.org/10.1016/j.jcomc.2020.100060.

35 Liang, J.-Z. (2013). Reinforcement and quantitative description of inorganic particulate-filled polymer composites. Composites. Part B, Engineering, 51, 224-232. http://dx.doi.org/10.1016/j.compositesb.2013.03.019.

36 Zhang, D., Guo, J., & Zhang, K. (2015). Effects of compatilizers on mechanical and dynamic mechanical properties of polypropylene-long glass fiber composites. Journal of Thermoplastic Composite Materials, 28(5), 643-655. http://dx.doi.org/10.1177/0892705713486141.

37 Haverroth, G. E., & Soares, B. G. (2021). Polypropylene and hollow glass microspheres compatibilization via addition of compatibilizing agents. Polymer Composites, 42(9), 4872-4883. http://dx.doi.org/10.1002/pc.26196.

38 Sung, G., & Kim, J. H. (2017). Influence of filler surface characteristics on morphological, physical, acoustic properties of polyurethane composite foams filled with inorganic fillers. Composites Science and Technology, 146, 147-154. http://dx.doi.org/10.1016/j.compscitech.2017.04.029.

39 Çelebi, H. (2017). Thermal conductivity and tensile properties of hollow glass microsphere/polypropylene composites. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 18(3), 746-753. http://dx.doi.org/10.18038/aubtda.323483.

62c5cf33a953952c33395464 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections