Effect of hollow glass microspheres addition on density reduction and mechanical properties of PA6/glass fibers composites
Thaysa Rodrigues Mendes Ferreira; Matheus de Alencar Lechtman; Filipe Lauro Dias; Aline Bruna da Silva
Abstract
Keywords
References
1 Plocher, J., & Panesar, A. (2019). Review on design and structural optimisation in additive manufacturing: towards next-generation lightweight structures.
2 Akampumuza, O., Wambua, P. M., Ahmed, A., Li, W., & Qin, X.-H. (2016). Review of the applications of biocomposites in the automotive industry.
3 Vyncke, G., Fiorio, R., Cardon, L., & Ragaert, K. (2020). The effect of polyethylene on the properties of talc-filled recycled polypropylene.
4 Awan, M. O., Shakoor, A., Rehan, M. S., & Gill, Y. Q. (2021). Development of HDPE composites with improved mechanical properties using calcium carbonate and NanoClay.
5 Ohayon-Lavi, A., Buzaglo, M., Ligati, S., Peretz-Damari, S., Shachar, G., Pinsk, N., Riskin, M., Schatzberg, Y., Genish, I., & Regev, O. (2020). Compression-enhanced thermal conductivity of carbon loaded polymer composites.
6 Aseer, J. R., Deka, K., Kumar, S., Muralidharan, S., & Sharma, A. (2016). Effect of fiber content on mechanical properties of Glass Fiber Reinforced Polymer (GFRP) composites.
7 Anandakumar, P., Timmaraju, M. V., & Velmurugan, R. (2021). Development of efficient short/continuous fiber thermoplastic composite automobile suspension upper control arm.
8 Papageorgiou, D. G., Kinloch, I. A., & Young, R. J. (2016). Hybrid multifunctional graphene/glass-fibre polypropylene composites.
9 Ravishankar, B., Nayak, S. K., & Kader, M. A. (2019). Hybrid composites for automotive applications – A review.
10 Jang, K.-S. (2020). Low-density polycarbonate composites with robust hollow glass microspheres by tailorable processing variables.
11 Ding, J., Liu, Q., Zhang, B., Ye, F., & Gao, Y. (2020). Preparation and characterization of hollow glass microsphere ceramics and silica aerogel/hollow glass microsphere ceramics having low density and low thermal conductivity.
12 Jiao, C., Wang, H., Li, S., & Chen, X. (2017). Fire hazard reduction of hollow glass microspheres in thermoplastic polyurethane composites.
13 Liang, J. Z., & Li, F. H. (2006). Measurement of thermal conductivity of hollow glass-bead-filled polypropylene composites.
14 Zhang, Z., Jiang, H., Li, R., Gao, S., Wang, Q., Wang, G., Ouyang, X., & Wei, H. (2020). High-damping polyurethane/hollow glass microspheres sound insulation materials: preparation and characterization.
15 Awais, H., Nawab, Y., Anjang, A., Akil, H. M., & Abidin, M. S. Z. (2020). Mechanical properties of continuous natural fibres (Jute, Hemp, Flax) reinforced polypropylene composites modified with hollow glass microspheres.
16 Borges, T. E., Almeida, J. H. S., Jr., Amico, S. C., & Amado, F. D. R. (2016). Hollow glass microspheres/piassava fiber-reinforced homo- and co-polypropylene composites: preparation and properties.
17 Bourry, D., & Favis, B. D. (1998). Morphology development in a polyethylene/polystyrene binary blend during twin-screw extrusion.
18 Pandey, V., Chen, H., Ma, J., & Maia, J. M. (2021). Extension-dominated improved dispersive mixing in single-screw extrusion. Part 2: comparative analysis with twin-screw extruder.
19 Wilson, G. F., & Eckstein, Y. (1991). US Patent No. 5017629A. Akron, Ohio: The BF Goodrich Company. Retrieved in 2021, August 13, from
20 Shira, S., & Buller, C. (2015). Mixing and dispersion of hollow glass microsphere products. In: Amos, S. E., & Yalcin, B., editors.
21 Kim, S., Wu, H., Devega, A., Sico, M., Fahy, W., Misasi, J., Dickens, T., & Koo, J. H. (2020). Development of polyetherimide composites for use as 3D printed thermal protection material.
22 Özbay, B., & Serhatlı, E. (2020). Processing and characterization of hollow glass-filled polyamide 12 composites by selective laser sintering method.
23 Ksouri, I., De Almeida, O., & Haddar, N. (2017). Long term ageing of polyamide 6 and polyamide 6 reinforced with 30% of glass fibers: physicochemical, mechanical and morphological characterization.
24 Caputo, F., Lamanna, G., De Luca, A., & Armentani, E. (2020). Thermo-mechanical investigation on an automotive engine encapsulation system made of fiberglass reinforced polyamide PA6 GF30 material.
25 Berman, A., DiLoreto, E., Moon, R. J., & Kalaitzidou, K. (2020). Hollow glass spheres in sheet molding compound composites: limitations and potential.
26 Lai, C.-C., Chen, S.-Y., Chen, M.-H., Chen, H.-L., Hsiao, H.-T., Liu, L.-C., & Chen, C.-M. (2019). Preparation and characterization of heterocyclic polyamide 6 (PA 6) with high transparencies and low hygroscopicities.
27 Yoo, D.-Y., Kim, S., Park, G.-J., Park, J.-J., & Kim, S.-W. (2017). Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites.
28 Yazici, Ş., Inan, G., & Tabak, V. (2007). Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC.
29 Hu, Y., Mei, R., An, Z., & Zhang, J. (2013). Silicon rubber/hollow glass microsphere composites: influence of broken hollow glass microsphere on mechanical and thermal insulation property.
30 Yoo, Y., Spencer, M. W., & Paul, D. R. (2011). Morphology and mechanical properties of glass fiber reinforced Nylon 6 nanocomposites.
31 Doumbia, A. S., Bourmaud, A., Jouannet, D., Falher, T., Orange, F., Retoux, R., Le Pluart, L., & Cauret, L. (2015). Hollow microspheres – poly-(propylene) blends: relationship between microspheres degradation and composite properties.
32 Carvalho, G. B., Canevarolo, S. V., Jr., & Sousa, J. A. (2020). Influence of interfacial interactions on the mechanical behavior of hybrid composites of polypropylene / short glass fibers / hollow glass beads.
33 Kumar, N., Mireja, S., Khandelwal, V., Arun, B., & Manik, G. (2016). Light-weight high-strength hollow glass microspheres and bamboo fiber based hybrid polypropylene composite: a strength analysis and morphological study.
34 Bauer, P., Becker, Y. N., Motsch-Eichmann, N., Mehl, K., Müller, I., & Hausmann, J. (2020). Hybrid thermoset-thermoplastic structures: an experimental investigation on the interface strength of continuous fiber-reinforced epoxy and short-fiber reinforced polyamide 6.
35 Liang, J.-Z. (2013). Reinforcement and quantitative description of inorganic particulate-filled polymer composites.
36 Zhang, D., Guo, J., & Zhang, K. (2015). Effects of compatilizers on mechanical and dynamic mechanical properties of polypropylene-long glass fiber composites.
37 Haverroth, G. E., & Soares, B. G. (2021). Polypropylene and hollow glass microspheres compatibilization via addition of compatibilizing agents.
38 Sung, G., & Kim, J. H. (2017). Influence of filler surface characteristics on morphological, physical, acoustic properties of polyurethane composite foams filled with inorganic fillers.
39 Çelebi, H. (2017). Thermal conductivity and tensile properties of hollow glass microsphere/polypropylene composites.