Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Scaffold based on castor oil as an osteoconductive matrix in bone repair: biocompatibility analysis

Fabianne Soares Lima; Luis Felipe Matos; Isnayra Kerolaynne Pacheco; Fernando Reis; João Victor Frazão Câmara; Josué Junior Araujo Pierote; José Milton Matos; Alessandra Ribeiro; Walter Moura; Ana Cristina Fialho

Downloads: 1
Views: 520


To analyze the biocompatibility of the scaffold produced from a natural polymer derived from castor oil through hemolytic activity and antimicrobial activity, to enable the clinical application. Three in vitro tests were performed: Hemolytic activity test - Polymer partially dissolved in contact with blood agar; Hemolytic activity test in sheep's blood - Polymer extract with red blood cells solution; Antimicrobial activity test - Solid polymer in direct contact with E. Coli and S. Aureus. For hemolytic tests, none of the samples showed hemolysis. Negative hemolytic activity is a good indicator, as the maintenance of the blood clot in the area of the lesion is essential for the formation of new tissue. For the antimicrobial activity test, no significant activity was observed against the bacteria used. The polymer is not toxic to red blood cells, being viable for clinical application as a matrix for tissue regeneration.


bone matrix, materials testing, tissue scaffolds


1 Perier-Metz, C., Duda, G. N., & Checa, S. (2020). Mechano-biological computer model of scaffold-supported bone regeneration: effect of bone graft and scaffold structure on large bone defect tissue patterning. Frontiers in Bioengineering and Biotechnology, 8, 585799. http://dx.doi.org/10.3389/fbioe.2020.585799. PMid:33262976.

2 Jeong, H., Gwak, S., Seo, K. D., Lee, S., Yun, J., Cho, Y., & Lee, S. (2020). Fabrication of three-dimensional composite scaffold for simultaneous alveolar bone regeneration in dental implant installation. International Journal of Molecular Sciences, 21(5), 1863. http://dx.doi.org/10.3390/ijms21051863. PMid:32182824.

3 Fernandes, H. R., Gaddam, A., Rebelo, A., Brazete, D., Stan, G. E., & Ferreira, J. M. F. (2018). Bioactive glasses and glass-ceramics for healthcare applications in bone regeneration and tissue engineering. Materials, 11(12), 2530. http://dx.doi.org/10.3390/ma11122530. PMid:30545136.

4 Sergi, R., Bellucci, D., & Cannillo, V. (2020). A review of bioactive glass/natural polymer composites: state of the art. Materials, 13(23), 5560. http://dx.doi.org/10.3390/ma13235560. PMid:33291305.

5 Taale, M., Schütt, F., Zheng, K., Mishra, Y. K., Boccaccini, A. R., Adelung, R., & Selhuber-Unkel, C. (2018). Bioactive carbon-based hybrid 3d scaffolds for osteoblast growth. ACS Applied Materials & Interfaces, 10(50), 43874-43886. http://dx.doi.org/10.1021/acsami.8b13631. PMid:30395704.

6 Keong, L. C., & Halim, A. S. (2009). In vitro models in biocompatibility assessment for 6 biomedical-grade chitosan derivatives in wound management. International Journal of Molecular Sciences, 10(3), 1300-1313. http://dx.doi.org/10.3390/ijms10031300. PMid:19399250.

7 Moura, F. N., No., Fialho, A. C. V., Moura, W. L., Rosa, A. G. F., Matos, J. M. E., Reis, F. S., Mendes, M. T. A., & Sales, E. S. D. (2019). Castor polyurethane used as osteosynthesis plates: microstructural and thermal analysis. Polímeros: Ciência e Tecnologia, 29(2), e2019029. http://dx.doi.org/10.1590/0104-1428.02418.

8 Pacheco, I. K. C., Reis, F. S., Carvalho, C. E. S., Matos, J. M. E., Argolo, N. M., No., Baeta, S. A. F., Silva, K. R., Dantas, H. V., Sousa, F. B., & Fialho, A. C. V. (2021). Development of castor polyurethane scaffold (Ricinus communis L.) and its effect with stem cells for bone repair in an osteoporosis model. Biomedical Materials, 16(6), 065006. http://dx.doi.org/10.1088/1748-605X/ac1f9e. PMid:34416741.

9 Morais, J. P. P., Pacheco, I. K. C., Maia, A. L. M., Fo., Ferreira, D. C. L., Viana, F. J. C., Reis, F. S., Matos, J. M. E., Rizzo, M. S., & Fialho, A. C. V. (2021). Polyurethane derived from castor oil monoacylglyceride (Ricinus communis) for bone defects reconstruction: characterization and in vivo testing. Journal of Materials Science: Materials in Medicine, 32(4), 39. http://dx.doi.org/10.1007/s10856-021-06511-z. PMid:33792773.

10 Merck. (1990). Cultivation measurement manual. Darmstadt: Merck KGaA.

11 Kalegari, M., Miguel, M. D., Dias, J. F. G., Lordello, A. L. L., Lima, C. O., Miyazaki, C. M. S., Zanin, S. M. W., Verdam, M. C. S., & Miguel, O. G. (2011). Phytochemical constituents and preliminary toxicity evaluation of leaves from Rourea induta Planch. (Connaraceae). Brazilian Journal of Pharmaceutical Sciences, 47(3), 635-642. http://dx.doi.org/10.1590/S1984-82502011000300023.

12 Grilo, K. T. M. (2016). Determinação da concentração de hemoglobina livre em concentrados de hemácias pela espectrofotometria direta: método de Harboe (Dissertação de Mestrado). Universidade de São Paulo, Ribeirão Preto, Brasil.

13 Hou, Y., Wang, X., Yang, J., Zhu, R., Zhang, Z., & Li, Y. (2018). Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold. Journal of Biomedical Materials Research. Part A, 106(5), 1288-1298. http://dx.doi.org/10.1002/jbm.a.36330. PMid:29316233.

14 Clinical and Laboratory Standards Institute – CLSI. (2005). Performance standards for antimicrobial susceptibility testing: fifteenth informational supplement CLSI/NCCLS document M100-S15. USA: Clinical and Laboratory Standards Institute.

15 Shah, F. A., Thomsen, P., & Palmquist, A. (2018). A review of the impact of implant biomaterials on osteocytes. Journal of Dental Research, 97(9), 977-986. http://dx.doi.org/10.1177/0022034518778033. PMid:29863948.

16 Weber, M., Steinle, H., Golombek, S., Hann, L., Schlensak, C., Wendel, H. P., & Avci-Adali, M. (2018). Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility. Frontiers in Bioengineering and Biotechnology, 6, 99. http://dx.doi.org/10.3389/fbioe.2018.00099. PMid:30062094.

17 Zhu, T., Cui, Y., Zhang, M., Zhao, D., Liu, G., & Ding, J. (2020). Engineered threedimensional scaffolds for enhanced bone regeneration in osteonecrosis. Bioactive Materials, 5(3), 584-601. http://dx.doi.org/10.1016/j.bioactmat.2020.04.008. PMid:32405574.

18 Kawai, T., Shanjani, Y., Fazeli, S., Behn, A. W., Okuzu, Y., Goodman, S. B., & Yang, Y. P. (2018). Customized, degradable, functionally graded scaffold for potential treatment of early stage osteonecrosis of the femoral head. Journal of Orthopaedic Research, 36(3), 1002-1011. http://dx.doi.org/10.1002/jor.23673. PMid:28782831.

19 Wang, G., Li, Y., Sun, T., Wang, C., Qiao, L., Wang, Y., Dong, K., Yuan, T., Chen, J., Chen, G., & Sun, S. (2019). BMSC affinity peptide-functionalized β-tricalcium phosphate scaffolds promoting repair of osteonecrosis of the femoral head. Journal of Orthopaedic Surgery and Research, 14(1), 204. http://dx.doi.org/10.1186/s13018-019-1243-5. PMid:31272458.

20 Tan, A. C. W., Polo-Cambronell, B. J., Provaggi, E., Ardila-Suárez, C., Ramirez-Caballero, G. E., Baldovino-Medrano, V. G., & Kalaskar, D. M. (2018). Design and development of low cost polyurethane biopolymer based on castor oil and glycerol for biomedical applications. Biopolymers, 109(2), e23078. http://dx.doi.org/10.1002/bip.23078. PMid:29159831.

21 Patel, V. R., Dumancas, G. G., Viswanath, L. C. K., Maples, R., & Subong, B. J. J. (2016). Castor oil: properties, uses, and optimization of processing parameters in commercial production. Lipid Insights, 9, 1-12. http://dx.doi.org/10.4137/LPI.S40233. PMid:27656091.

22 Oryan, A., Alidadi, S., Moshiri, A., & Maffulli, N. (2014). Bone regenerative medicine: classic options, novel strategies, and future directions. Journal of Orthopaedic Surgery and Research, 9(1), 18. http://dx.doi.org/10.1186/1749-799X-9-18. PMid:24628910.

23 McLaren, J. S., White, L. J., Cox, H. C., Ashraf, W., Rahman, C. V., Blunn, G. W., Goodship, A. E., Quirk, R. A., Shakesheff, K. M., Bayston, R., & Scammell, B. E. (2014). A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis in a contaminated in vivo bone defect model. European Cells & Materials, 27, 332-349. http://dx.doi.org/10.22203/eCM.v027a24. PMid:24908426.

24 Yang, K., Han, Q., Chen, B., Zheng, Y., Zhang, K., Li, Q., & Wang, J. (2018). Antimicrobial hydrogels: promising materials for medical application. International Journal of Nanomedicine, 13, 2217-2263. http://dx.doi.org/10.2147/IJN.S154748. PMid:29695904.

25 Kamaruzzaman, N. F., Tan, L. P., Hamdan, R. H., Choong, S. S., Wong, W. K., Gibson, A. J., Chivu, A., & Pina, M. F. (2019). Antimicrobial polymers: the potential replacement of existing antibiotics? International Journal of Molecular Sciences, 20(11), 2747. http://dx.doi.org/10.3390/ijms20112747. PMid:31167476.

26 Pramanik, S., Ataollahi, F., Pingguan-Murphy, B., Oshkour, A. A., & Osman, N. A. A. (2015). In vitro study of surface modified poly(ethylene glycol)-impregnated sintered bovine bone scaffolds on human fibroblast cells. Scientific Reports, 5(1), 9806. http://dx.doi.org/10.1038/srep09806. PMid:25950377.

27 Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., Li, B., & Shu, W. (2017). 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 3(3), 278-314. http://dx.doi.org/10.1016/j.bioactmat.2017.10.001. PMid:29744467.

28 Qasim, M., Chae, D. S., & Lee, N. Y. (2019). Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering. International Journal of Nanomedicine, 14, 4333-4351. http://dx.doi.org/10.2147/IJN.S209431. PMid:31354264.

62c5d041a953952c931b3266 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections