Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2097
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Synthesis and characterization of pH and temperature responsive poly(2-hydroxyethyl methacrylate-co-acrylamide) hydrogels

Rapado, Manuel; Peniche, Carlos

Downloads: 1
Views: 327

Abstract

Acrylamide/2-hydroxyethyl methacrylate hydrogels were prepared by simultaneous radiation-induced cross-linking copolymerization of acrylamide (AAm), 2-hydroxyethyl methacrylate (HEMA) and water mixtures at a radiation dose of 10 kGy. Hydrogels were characterized by infrared spectroscopy. Dynamic and equilibrium swelling of hydrogels in water and in buffer solutions were investigated. They were sensitive to pH and temperature. Swelling was non-Fickean and increased with increasing the acrylamide content. Temperature dependence of the equilibrium water uptake of copolymers exhibited a discontinuity around 35 °C resulting from the weakening of the hydrogen bonds between the hydroxyl groups of HEMA and the amide groups of AAm. The thermodynamic and network parameters derived from swelling and mechanical measurements are compared and discussed. They exhibit a strong dependence on the AAm content in the hydrogel. These hydrogels can be considered for applications in fields requiring environmentally responsive hydrogels such as medicine, pharmacy and bioengeneering.

Keywords

acrylamide, hydrogel, hydroxyethyl methacrylate, radiation copolymerization, swelling kinetics.

References

1. Ratner, B. R., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (Ed.). (2013). Biomaterials science. An introduction to materials in medicine. Oxford: Academic Press.

2. Rosiak, J. M., Ulanski, P., Pajewski, L. A., Yoshii, F., & Makuuchi, K. (1995). Radiation fromation of hydrogels for biomedical purposes. Some remarks and comments. Radiation Physics and Chemistry, 46(2), 161-168. http://dx.doi.org/10.1016/0969-806X(95)00007-K.

3. Witchterle, O., & Lím, D. (1960). Hydrophilic gels for biological use. Nature, 185(4706), 117-118. http://dx.doi.org/10.1038/185117a0.

4. Barbucci, R. (Ed.). (2009). Hydrogels. Biological properties and applications. MIlan: Springer.

5. Lou, X., & van Coppenhagen, C. (2001). Mechanical characteristics of poly(2-hydroxyethyl methacrylate) hydrogels crosslinked with various difunctional compounds. Polymer International, 50(3), 319-325. http://dx.doi.org/10.1002/pi.630.

6. Park, S., Nam, S. H., & Koh, W. G. (2012). Preparation of collagen-immobillized poly(ethylene glycol/poly(2-hydroxyethyl methacryalte) Interpenetrating network hydrogels for potential application of artificial cornea. Journal of Applied Polymer Science, 123(2), 637-645. http://dx.doi.org/10.1002/app.34532.

7. Ramaraj, B., & Radhakrishnan, G. (1994). Modification of the dynamic swelling behaviour of poly(2-hydroxyethyl methacrylate) hydrogels in water through interpenetrating polymer networks (IPNs). Polymer, 35(10), 2167-2173. http://dx.doi.org/10.1016/0032-3861(94)90245-3.

8. Chapiro, A. (1995). Radiation chemistry in the field of biomaterials. Radiation Physics and Chemistry, 46(2), 159-160. http://dx.doi.org/10.1016/0969-806X(95)00006-J.

9. Rosiak, J. M., & Yoshii, F. (1999). Hydrogels and their medical applications. Nuclear Instruments and Methods in Physics Research Section B, 151(1-4), 56-64. http://dx.doi.org/10.1016/S0168-583X(99)00118-4.

10. Macret, M., & Hild, G. (1982). Hydroxyalkyl methacrylates: hydrogel formation based on the radical copolymerization of 2-hydroxyethylmethacrylate and 2,3-dihydroxypropylmethacrylate. Polymer, 23(5), 748-753. http://dx.doi.org/10.1016/0032-3861(82)90063-5.

11. Dušek, K., & Janáček, J. (1975). Hydrophilic gels based on copolymers of 2- hydroxyethyl methacrylate with methacrylamide and acrylamide. Journal of Applied Polymer Science, 19(11), 3061-3075. http://dx.doi.org/10.1002/app.1975.070191111.

12. Işik, B. (2000). Swelling behaviour of acrylamide-2 hydroxyethyl methacrylate hydrogels. Turkish Journal of Chemistry, 24, 147-156. Retrieved in 16 July 2013, from http://journals.tubitak.gov.tr/chem/issues/kim-00-24-2/kim-24-2-5-98080.pdf

13. Singh, B., Chauhan, N., Kumar, S., & Bala, R. (2008). Psyllium and copolymers of 2-hydroxyethylmethacrylate and acrylamide -based novel devices for the use in colon specific antibiotic drug delivery. International Journal of Pharmaceutics, 352(1-2), 74-80. http://dx.doi.org/10.1016/j.ijpharm.2007.10.019. PMid:18055144.

14. El-Din H. M. N., & El-Naggar, A. W. M. (2004). Synthesis and characterization of hydroxyethyl methacrylate/acrylamide responsive hydrogels. Journal of Applied Polymer Science, 95(5), 1105-1115.

15. Mahmudi, N., Şen, M., Rendevski, S., & Güven, O. (2007). Radiation synthesis of low swelling acrylamide based hydrogels and determination of average molecular weight between cross-links. Nuclear Instruments and Methods in Physics Research Section B, 265(1), 375-378. http://dx.doi.org/10.1016/j.nimb.2007.09.007.

16. Iza, M., Stoianovici, G., Viora, L., Grossiord, J. L., & Couarraze, G. (1998). Hydrogels of poly(ethylene glycol): mechanical characterization and release of a model drug. Journal of Controlled Release, 52(1-2), 41-45. http://dx.doi.org/10.1016/S0168-3659(97)00191-0. PMid:9685934.

17. Davidson, G. W. R., 3rd, & Peppas, N. A. (1986). Solute and penetrant diffusion in swellable polymers. V. Relaxation -controlled transport in P (HEMA-cp-MMA) copolymers. Journal of Controlled Release, 3(1-4), 243-258. http://dx.doi.org/10.1016/0168-3659(86)90096-9.

18. Lurie, Y. Y. (1979). Handbook of analytical chemistry. Moscow: Chemistry Press.

19. Ham, G. E. (1966). Copolymerization. In H. F. Mark, N. Gaylord, & N. M. Bikales (Ed.), Encyclopedia of polymer science and technology (Vol. 4, pp. 165-244). New York: Interscience.

20. Murugan, R., Mohan, S., & Bigotto, A. (1998). FTIR and polarised raman spectra of acrylamide and polyacrylamide. Journal of the Korean Physical Society, 32(4), 505-512. Retrieved in 13 May 2013, from http://www.kps.or.kr/jkps/downloadPdf.asp?articleuid=%7B43E6F355-D43F-4D4E-B386-6E5B29A6F648%7D

21. Bell, C. L., & Peppas, N. A. (1995). Biomedical membranes from hydrogels and interpolymer complexes. In N. A. Peppas, & R. S. Langer (Ed.), Biopolymers II (Advances in Polymer Science, Vol. 122, pp. 125-175). Berlin: Springer-Verlag.

22. Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in form of slabs, sphere, cylinders or discs. Journal of Controlled Release, 5(1), 23-36. http://dx.doi.org/10.1016/0168-3659(87)90034-4.

23. Karadag, E., Saraydin, D., & Guven, O. (2001). Radiation induced superadsorbent hydrogels. Acrylamide/Itaconic acid copolymers. Macromolecular Materials and Engineering, 286(1), 34-42. http://dx.doi.org/10.1002/1439-2054(20010101)286:1<34::AID-MAME34>3.0.CO;2-J.

24. Bocourt, M., Bada, N., Acosta, N., Bucio, E., & Peniche, C. (2014). Synthesis and characterization of novel pH-sensitive chitosan-poly(acrylamide-co-itaconic acid) hydrogels. Polymer International, 63(9), 1715-1723. http://dx.doi.org/10.1002/pi.4699.

25. Hu, D. S.-G., & Lin, M. T. S. (1994). Water-polymer interactions and critical phenomena of swelling in inhomogeneous poly(acrylonitrile-acrylamide-acrylic acid) gels. Polymer, 35(20), 4416-4422. http://dx.doi.org/10.1016/0032-3861(94)90101-5.

26. Wang, J., Wu, W., & Lin, Z. (2008). Kinetics and thermodynamics of the water sorption of 2-Hydroxyethyl methacrylate/styrene copolymer hydrogels. Journal of Applied Polymer Science, 109(5), 3018-3023. http://dx.doi.org/10.1002/app.28403.

27. Peniche, C., Cohen, M. E., Vázquez, B., & San Román, J. (1997). Water sorption of flexible networks based on 2-hydroxyethyl methacrylate-triethylenglycol dimethacrylate copolymers. Polymer, 38(24), 5977-5982. http://dx.doi.org/10.1016/S0032-3861(96)01058-0.

28. Mark, J. E., & Erman, B. (Ed.). (1988). Rubberlike elasticity: a molecular primer. NewYork: Wiley.

29. Flory, P. J., & Rehner, J., Jr. (1943). Statistical mechanics of swelling of crosslinked polymer networks II. The Journal of Chemical Physics, 11, 521-526.

30. Teraoka, I. (2002). Polymer solutions: an introduction to physical properties. New York: Wiley.

31. Orwol, R. A., & Chong, Y. S. (1999). Polyacrylamide. In J. E. Mark (Ed.), Polymer data handbook (pp. 247-251). Oxford: Oxford University Press.

32. Day, J. C., & Robb, I. D. (1981). Thermodynamic parameters of polyacrylamides in water. Polymer, 22(11), 1530-1533. http://dx.doi.org/10.1016/0032-3861(81)90324-4.

33. Uzun, O., Hassnisaber, M., Şen, M., & Guven, O. (2003). Enhancement and control of cross-linking of dimethylaminoethyl methacrylate irradiated at low dose rate in the presence of ethylene glycol dimethacrylate. Nuclear Instruments and Methods in Physics Research Section B, 208, 242-246. http://dx.doi.org/10.1016/S0168-583X(03)01112-1.
588371cb7f8c9d0a0c8b4a78 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections