Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Time domain NMR evaluation of poly(vinyl alcohol) xerogels

Rodrigues, Elton Jorge da Rocha; Cavalcante, Maxwell de Paula; Tavares, Maria Inês Bruno

Downloads: 0
Views: 797


Poly(vinyl alcohol) (PVA)-based chemically cross-linked xerogels, both neat and loaded with nanoparticulate hydrophilic silica (SiO2), were obtained and characterized mainly through time domain NMR experiments (TD-NMR). Fourier-transform infrared (FT-IR) and wide angle X-ray diffraction (WAXD) analyses were employed as secondary methods. TD-NMR, through the interpretation of the spin-lattice relaxation constant values and related information, showed both cross-linking and nanoparticle influences on PVA matrix. SiO2 does not interact chemically with the PVA chains, but has effect on its molecular mobility, as investigated via TD-NMR. Apparent energy of activation, spin-lattice time constant and size of spin domains in the sample have almost linear dependence with the degree of cross-linking of the PVA and are affected by the addition of SiO2. These three parameters were derived from a single set of TD-NMR experiments, which demonstrates the versatility of the technique for characterization of inorganic-organic hybrid xerogels, an important class of materials.


inorganic-organic hybrid, polymer gels, relaxometry, low-field nuclear magnetic resonance, time domain nuclear magnetic resonance.


1. Tavares, M. I. B., Monteiro, E. E. C., Harris, R. K., & Kenwright, A. M. (1994). NMR study of plasticized PVC. European Polymer Journal, 30(9), 1089-1095. http://dx.doi.org/10.1016/0014-3057(94)90205-4.

2. Friebolin, H. (1993). Basic one- and two-dimensional NMR spectroscopy. Weinheim: VCH.

3. Bathista, A., & Tavares, M. I. B. (2010). Introdução à relaxação magnética nuclear. São Paulo: Lulu Inc.

4. Silva, M. B. R., Tavares, M. I. B., Silva, E. O., & Cucinelli, R. P., No. (2013). Dynamic and structural evaluation of poly(3-hydroxybutyrate) layered nanocomposites. Polymer Testing, 32(1), 165-174. http://dx.doi.org/10.1016/j.polymertesting.2012.09.006.

5. Adriaensens, P., Dams, R., Lutsen, L., Vanderzande, D., & Gelan, J. (2004). Study of the nanomorphology of OC1C10-PPV/precursor-PPV blends by solid state NMR relaxometry. Polymer, 45(13), 4499-4505. http://dx.doi.org/10.1016/j.polymer.2004.04.010.

6. ten Brinke, J. W., Litvinov, V. M., Wijnhoven, J. E. G. J., & Noordermeer, J. W. M. (2002). Interactions of Stöber silica with natural rubber under the influence of coupling agents, studied by 1H NMR T2 relaxation analysis. Macromolecules, 35(27), 10026-10037. http://dx.doi.org/10.1021/ma020555+.

7. Rodrigues, E. J. R., Nascimento, S. A. M., Tavares, M. I. B., & Merat, P. P. (2012). Investigação da influência do processamento na dinâmica molecular de nanocompósitos de policarbonato e argila organofílica obtidos via intercalação por fusão. Polímeros: Ciência e Tecnologia, 22(5), 436-439. http://dx.doi.org/10.1590/S0104-1428012005000058.

8. Uehara, H., Aoike, T., Yamanobe, T., & Komoto, T. (2002). Solid-state 1H NMR relaxation analysis of ultrahigh molecular weight polyethylene reactor powder. Macromolecules, 35(7), 2640-2647. http://dx.doi.org/10.1021/ma010464x.

9. Barbosa, L. L., Kock, F. V. C., Silva, R. C., Freitas, J. C. C., Lacerda, V., Jr, & Castro, E. V. R. (2013). Application of low-field NMR for the determination of physical properties of petroleum fractions. Energy & Fuels, 27(2), 673-679. http://dx.doi.org/10.1021/ef301588r.

10. Andrade, F. D., Marchi, A., No., & Colnago, L. A. (2011). Qualitative analysis by online nuclear magnetic resonance using Carr-Purcell-Meiboom-Gill sequence with low refocusing flip angles. Talanta, 84(1), 84-88. http://dx.doi.org/10.1016/j.talanta.2010.12.033. PMid:21315902.

11. Cabeça, L. F., Marconcini, L. V., Mambrini, G. P., Azeredo, R. B. V., & Colnago, L. A. (2011). Monitoring the transesterification reaction used in biodiesel production, with a low cost unilateral nuclear magnetic resonance sensor. Energy & Fuels, 25(6), 2696-2701. http://dx.doi.org/10.1021/ef200294j.

12. Litvinov, V. M., Orza, R. A., Klüppel, M., van Duin, M., & Magusin, P. C. M. M. (2011). Rubber-filler interactions and network structure in relation to stress-strain behavior of vulcanized, carbon black filled EPDM. Macromolecules, 44(12), 4887-4900. http://dx.doi.org/10.1021/ma2007255.

13. Ajji, Z. (2005). Preparation of poly(vinyl alcohol) hydrogels containing citric or succinic acid using gamma radiation. Radiation Physics and Chemistry, 74(1), 36-41. http://dx.doi.org/10.1016/j.radphyschem.2004.12.005.

14. Sánchez, L. G. J. G., & Ortega, J. A. C. (2014). Síntesis de hidrogeles de acrilamida en soluciones acuosas de etanol. Polímeros. Ciência e Tecnologia, 24(6), 752-756. http://dx.doi.org/10.1590/0104-1428.1663.

15. Barbucci, R., Leone, G., Chiumiento, A., Di Cocoo, M. E., D’Orazio, G., Gianferri, R., & Delfini, M. (2006). Low-and high-resolution nuclear magnetic resonance (NMR) characterisation of hyaluronan-based native and sulfated hydrogels. Carbohydrate Research, 341(11), 1848-1858. http://dx.doi.org/10.1016/j.carres.2006.04.046. PMid:16716277.

16. Kim, M. J., Park, Y. H., Youm, K. H., & Lee, K.-H. (2004). Gas permeation through water-swollen polysaccharide – poly(vinyl alcohol) membranes. Journal of Applied Polymer Science, 91(5), 3225-3232. http://dx.doi.org/10.1002/app.13520.

17. Haque, M. A., Kurokawa, T., & Gong, J. P. (2012). Super tough double network hydrogels and their application as biomaterials. Polymer, 53(9), 1805-1822. http://dx.doi.org/10.1016/j.polymer.2012.03.013.

18. Zhao, F., Zhao, S., Welna, B., Kuhn, W., & Jlan, Y. (2007). Characterization of elastomer networks by NMR parameters part I. Kautschuk und Gummi, Kunststoffe, 10, 554-558. Retrieved in 06 March 2015, from http://www.kgk-rubberpoint.de/forschung/characterization-of-elastomer-networks-by-nmr-parameters-part-i/

19. Austin, D. T. R., & Hills, B. P. (2009). Two-dimensional NMR relaxation study of the pore structure in silicone hydrogel contact lenses. Applied Magnetic Resonance, 35(4), 581-591. http://dx.doi.org/10.1007/s00723-009-0187-z.

20. Saalwätcher, K. (2005). Artifacts in transverse proton NMR relaxation studies in elastomers. Macromolecules, 38(4), 1508-1512. http://dx.doi.org/10.1021/ma0478005.

21. Litvinov, V. M., & De, P. P. (2002). Spectroscopy of rubbers and rubbery materials. Shawbury: Rapra Technology Ltd.

22. Coviello, T., Matricardi, P., Alhaique, F., Farra, R., Tesei, G., Fiorentino, S., Asaro, F., Milcovich, G., & Grassi, M. (2013). Guar gum/borax hydrogel: rheological, low field NMR and release characterizations. Express Polymer Letters, 7(9), 733-746. http://dx.doi.org/10.3144/expresspolymlett.2013.71.

23. Dash, S., Murthy, P. N., Nath, L., & Chowdhurt, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica: Drug Research, 67(3), 217-223. Retrieved in 06 March 2015, from http://ptfarm.pl/pub/File/Acta_Poloniae/2010/3/217.pdf

24. Ruiz, J., Mantecón, A., & Cádiz, V. (2001). Synthesis and properties of hydrogels from poly (vinyl alcohol) and ethylenediaminetetraacetic dianhydride. Polymer, 42(12), 6347-6354. http://dx.doi.org/10.1016/S0032-3861(01)00082-9.

25. Wang, J., Cheung, M. K., & Mi, Y. (2001). Miscibility in blends of poly(4-vinylpyridine)/poly(4-vinylphenol) as studied by 13C solid-state NMR. Polymer, 42(7), 3087-3093. http://dx.doi.org/10.1016/S0032-3861(00)00643-1.

26. Joseph, S., Lauprêtre, F., Negrell, C., & Thomas, S. (2005). Compatibilising action of random and triblock copolymers of poly(styrene-butadiene) in polystyrene/polybutadiene blends: a study by electron microscopy, solid state NMR spectroscopy and mechanical measurements. Polymer, 46(22), 9385-9395. http://dx.doi.org/10.1016/j.polymer.2005.07.053.

27. Taylor, R. E., Bacher, A. D., & Dybowski, C. (2007). 1H NMR relaxation in urea. Journal of Molecular Structure, 846(1-3), 147-152. http://dx.doi.org/10.1016/j.molstruc.2007.01.043.

28. Wang, Y. L., Belton, P. S., & Tang, H. R. (1997). Proton NMR relaxation studies of solid L-alaninamide. Chemical Physics Letters, 268(5-6), 387-392. http://dx.doi.org/10.1016/S0009-2614(97)00204-2.

29. Burczak, K., Fujisato, T., Hatada, M., & Ikada, Y. (1994). Protein permeation through poly(vinyl alcohol) hydrogel membranes. Biomaterials, 15(3), 231-238. http://dx.doi.org/10.1016/0142-9612(94)90072-8. PMid:8199296.

30. Mansur, H. S., Oréfice, R. L., & Mansur, A. A. P. (2004). Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small angle X-ray scattering and FTIR spectroscopy. Polymer, 45(21), 7193-7202. http://dx.doi.org/10.1016/j.polymer.2004.08.036.

31. Mansur, H. S., Sadahira, C. M., Souza, A. N., & Mansur, A. A. P. (2008). FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering C, 28(4), 539-548. http://dx.doi.org/10.1016/j.msec.2007.10.088.

32. Andrade, G. I., Barbosa-Stancioli, E. F., Mansur, A. A. P., Vasconcelos, W. L., & Mansur, H. S. (2008). Small-angle X-ray scattering and FTIR characterization of nanostructured poly(vinyl alcohol)/silicate hybrids for immunoassay applications. Journal of Materials Science, 43(2), 450-463. http://dx.doi.org/10.1007/s10853-007-1953-7.

33. Mello, N. C., Bonagamba, T. J., Panepucci, H., Dahmouche, K., Judeinstein, P., & Aegerter, M. A. (2000). NMR study of ion-conducting organic-inorganic nanocomposites poly(ethylene glycol)-silica-LiClO4. Macromolecules, 33(4), 1280-1288. http://dx.doi.org/10.1021/ma991624w.

34. Paranhos, C. M., Soares, B. G., Oliveira, R. N., & Pessan, L. A. (2007). Poly(vinyl alcohol)/clay-based nanocomposite hydrogels: swelling behavior and characterization. Macromolecular Materials and Engineering, 292(5), 620-626. http://dx.doi.org/10.1002/mame.200700004.
588371d87f8c9d0a0c8b4ab4 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections