Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2066
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Synthesis and applications of polystyrene-block-poly(N-vinyl-2-pyrrolidone) copolymers

Farias, Marcelo Alexandre de; Gonçalves, Maria do Carmo

Downloads: 0
Views: 623

Abstract

This work describes the synthesis and applications of amphiphilic polystyrene-block-poly(N-vinyl-2-pyrrolidone) (PS-b-PVP) copolymers as a silver and silica nanoparticle surface modification agent. The synthesis of PS-b-PVP was carried out using controlled/living radical polymerization techniques. The synthesis of the block copolymers was confirmed by gel permeation chromatography and hydrogen nuclear magnetic resonance, presenting a polydispersity index of around 1.4 and number average molecular weight ranging between 10,000-14,000 g mol-1. The PS-b-PVP copolymers were applied as a silver nanoparticle (AgNP) stabilizing agent. These nanoparticles were produced by a single step and presented an 11 ± 1 nm diameter. Furthermore, the PS-b-PVP copolymers were also applied as a silica nanoparticle (SiO2NP) surface modification agent. The SiO2NP were synthesized by the Stöber method presenting a 72 ± 9 nm diameter. The SiO2NP surface modification by adsorption of PS-b-PVP caused the formation of a 5 ± 1 nm thick polymeric layer, providing the SiO2NP with a hydrophobic surface character. The structural and chemical characteristics shown by PS-b-PVP copolymers highlights their versatility for several applications, such as: water-in-oil emulsifier, stabilizing or coupling agents between inorganic particles and polymeric matrices.

Keywords

amphiphilic block copolymers, controlled radical polymerization, silica nanoparticles, silver nanoparticles, surface modification agent

References

1. Wang, Z., Zhang, Q., Zhan, X., Chen, F., Rao, G., & Xiong, J. (2013). Preparation, kinetics and microstructures of well-defined PS-b-PS/Bd diblock copolymers via RAFT miniemulsion polymerization. Journal of Polymer Research, 20(11), 288. http://dx.doi.org/10.1007/s10965-013-0288-0.

2. Li, G. H., Yang, P. P., Gao, Z. S., & Zhu, Y. Q. (2012). Synthesis and micellar behavior of poly(acrylic acid-b-styrene) block copolymers. Colloid & Polymer Science, 290(17), 1825-1831. http://dx.doi.org/10.1007/s00396-012-2799-3.

3. Roghani-Mamaqani, H., Haddadi-Asl, V., Khezri, K., Zeinali, E., & Salami-Kalajahi, M. (2013). In situ atom transfer radical polymerization of styrene to in-plane functionalize graphene nanolayers: grafting through hydroxyl groups. Journal of Polymer Research, 21(1), 333. http://dx.doi.org/10.1007/s10965-013-0333-z.

4. Wang, J.-S., & Matyjaszewski, K. (1995). Controlled/“living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society, 117(20), 5614-5615. http://dx.doi.org/10.1021/ja00125a035.

5. Matyjaszewski, K., Patten, T. E., & Xia, J. (1997). Controlled/“living” radical polymerization. kinetics of the homogeneous atom transfer radical polymerization of styrene. Journal of the American Chemical Society, 119(4), 674-680. http://dx.doi.org/10.1021/ja963361g.

6. Aitchison, T. J., Ginic-Markovic, M., Clarke, S., & Valiyaveettil, S. (2012). Polystyrene-block-poly(methyl methacrylate): initiation issues with block copolymer formation using ARGET ATRP. Macromolecular Chemistry and Physics, 213(1), 79-86. http://dx.doi.org/10.1002/macp.201100478.

7. Moad, G., Rizzardo, E., & Thang, S. H. (2005). Living radical polymerization by the RAFT process. Australian Journal of Chemistry, 58(6), 379-410. http://dx.doi.org/10.1071/CH05072.

8. Lowe, A. B., & Mccormick, C. L. (2007). Reversible addition – fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Polymer, 32, 283-351. http://dx.doi.org/10.1016/j.progpolymsci.2006.11.003.

9. Liu, X., Wu, Z., Zhou, F., Li, D., & Chen, H. (2010). Poly(vinylpyrrolidone-b-styrene) block copolymers tethered surfaces for protein adsorption and cell adhesion regulation. Colloids and Surfaces. B, Biointerfaces, 79(2), 452-459. http://dx.doi.org/10.1016/j.colsurfb.2010.05.011. PMid:20554165.

10. Kumar, S., Changez, M., Murthy, C. N., Yamago, S., & Lee, J.-S. (2011). Synthesis of well-defined amphiphilic block copolymers by organotellurium-mediated living radical polymerization (TERP). Macromolecular Rapid Communications, 32(19), 1576-1582. http://dx.doi.org/10.1002/marc.201100277. PMid:21793088.

11. Zhang, Z., Zhao, B., & Hu, L. (1996). PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. Journal of Solid State Chemistry, 121(1), 105-110. http://dx.doi.org/10.1006/jssc.1996.0015.

12. Riess, G. (2003). Micellization of block copolymers. Progress in Polymer Science, 28(7), 1107-1170. http://dx.doi.org/10.1016/S0079-6700(03)00015-7.

13. Hamley, I. W. (1998). The physics of block copolymers. Oxford: Oxford University Press.

14. Xue, B., Gao, L., Hou, Y., Liu, Z., & Jiang, L. (2013). Temperature controlled water/oil wettability of a surface fabricated by a block copolymer: application as a dual water/oil on-off switch. Advanced Materials, 25(2), 273-277. http://dx.doi.org/10.1002/adma.201202799. PMid:23074035.

15. Uyen, N. T. N., Joo, S. I., Kim, W. H., Oh, M. H., Lee, J., Lim, B. S., & Hong, S. C. (2013). Application of block copolymeric surface modifier with crosslinkable units for montmorillonite nanocomposites. Journal of Applied Polymer Science, 127(1), 690-698. http://dx.doi.org/10.1002/app.37856.

16. Zhang, D., Qi, L., Ma, J., & Cheng, H. (2001). Formation of silver nanowires in aqueous solutions of a double-hydrophilic block copolymer. Chemistry of Materials, 13(9), 2753-2755. http://dx.doi.org/10.1021/cm0105007.

17. Li, N., Qi, L., Shen, Y., Li, Y., & Chen, Y. (2013). Amphiphilic block copolymer modified magnetic nanoparticles for microwave-assisted extraction of polycyclic aromatic hydrocarbons in environmental water. Journal of Chromatography. A, 1316, 1-7. http://dx.doi.org/10.1016/j.chroma.2013.09.030. PMid:24119754.

18. Shamenkova, O. A., Mokeeva, L. K., Kopylova, N. A., & Semchikov, Y. D. (2006). Synthesis of amphiphilic block copolymers polystyrene-block-polyvinylpyrrolidone from active polystyrene. Russian Journal of Applied Chemistry, 79(3), 448-452. http://dx.doi.org/10.1134/S1070427206030232.

19. Park, J. T., Koh, J. H., Lee, K. J., Seo, J. A., Min, B. R., & Kim, J. H. (2008). Formation of silver nanoparticles created in situ in an amphiphilic block copolymer film. Journal of Applied Polymer Science, 110(4), 2352-2357. http://dx.doi.org/10.1002/app.28261.

20. Hussain, H., Tan, B. H., Gudipati, C. S., Liu, Y., He, C. B., & Davis, T. P. (2008). Synthesis and self-assembly of poly(styrene)-b-poly(N-vinylpyrrolidone) amphiphilic diblock copolymers made via a combined ATRP and MADIX approach. Journal of Polymer Science. Part A, Polymer Chemistry, 46(16), 5604-5615. http://dx.doi.org/10.1002/pola.22882.

21. Hu, D., & Zheng, S. (2010). Reaction-induced microphase separation in polybenzoxazine thermosets containing poly(N-vinyl pyrrolidone)-block-polystyrene diblock copolymer. Polymer, 51(26), 6346-6354. http://dx.doi.org/10.1016/j.polymer.2010.10.047.

22. Huang, C.-F., Nicolaÿ, R., Kwak, Y., Chang, F.-C., & Matyjaszewski, K. (2009). Homopolymerization and block copolymerization of N-vinylpyrrolidone by ATRP and RAFT with haloxanthate inifers. Macromolecules, 42(21), 8198-8210. http://dx.doi.org/10.1021/ma901578z.

23. Bilalis, P., Pitsikalis, M., & Hadjichristidis, N. (2006). Controlled nitroxide-mediated and reversible addition-fragmentation chain transfer polymerization of N-vinylpyrrolidone: Synthesis of block copolymers with styrene and 2-vinylpyridine. Journal of Polymer Science. Part A, Polymer Chemistry, 44(1), 659-665. http://dx.doi.org/10.1002/pola.21198.

24. Arsalani, N., Fattahi, H., & Entezami, A. A. (2006). Synthesis of amphiphilic diblock and random copolymers of styrene and N-vinylpyrrolidone using nitroxide-mediated living free radical polymerization. Iranian Polymer Journal, 15(12), 997-1005. Retrieved in 16 January 2015, from http://www.sid.ir/en/vewssid/j_pdf/81320061207.pdf

25. Ray, B., Kotani, M., & Yamago, S. (2006). Highly controlled synthesis of poly(N-vinylpyrrolidone) and its block copolymers by organostibine-mediated living radical polymerization. Macromolecules, 39(16), 5259-5265. http://dx.doi.org/10.1021/ma060248u.

26. Zakharova, O. G., Golyagina, Y. V., & Semchikov, Y. D. (2009). Synthesis and surface properties of amphiphilic block copolymers polyvinylpyrrolidone-block-polystyrene. Russian Journal of Applied Chemistry, 82(4), 644-649. http://dx.doi.org/10.1134/S107042720904020X.

27. Wager, C. M., Haddleton, D. M., & Bon, S. A. (2004). A simple method to convert atom transfer radical polymerization (ATRP) initiators into reversible addition fragmentation chain-transfer (RAFT) mediators. European Polymer Journal, 40(3), 641-645. http://dx.doi.org/10.1016/j.eurpolymj.2003.10.025.

28. Hayes, W., & Rannard, S. (2004). Controlled/“living” polymerization methods. In F. J. Daves (Ed.). Polymer synthesis – a practical approach (pp. 99-125). New York: Oxford University Press.

29. Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62-69. http://dx.doi.org/10.1016/0021-9797(68)90272-5.

30. Costa, C. A. R., Leite, C. A. P., & Galembeck, F. (2003). Size dependence of Stöber silica nanoparticle microchemistry. The Journal of Physical Chemistry B, 107(20), 4747-4755. http://dx.doi.org/10.1021/jp027525t.

31. Mark, J. E. (1999). Polymer data handbook. New York: Oxford University Press.

32. Williams, D., & Fleming, I. (2007). Spectroscopic methods in organic chemistry (6th ed.). New York: McGraw-Hill Higher Education.

33. Wan, D., Satoh, K., Kamigaito, M., & Okamoto, Y. (2005). Xanthate-mediated radical polymerization of N-vinylpyrrolidone in fluoroalcohols for simultaneous control of molecular weight and tacticity. Macromolecules, 38(25), 10397-10405. http://dx.doi.org/10.1021/ma0515230.

34. Wang, J.-S., & Matyjaszewski, K. (1995). Controlled/“living” radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules, 28(23), 7901-7910. http://dx.doi.org/10.1021/ma00127a042.

35. Matyjaszewski, K., & Xia, J. (2001). Atom transfer radical polymerization. Chemical Reviews, 101(9), 2921-2990. http://dx.doi.org/10.1021/cr940534g. PMid:11749397.

36. Perrier, S., & Takolpuckdee, P. (2005). Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. Journal of Polymer Science. Part A, Polymer Chemistry, 43(22), 5347-5393. http://dx.doi.org/10.1002/pola.20986.

37. Kahveci, M. U., Acik, G., & Yagci, Y. (2012). Synthesis of block copolymers by combination of atom transfer radical polymerization and visible light-induced free radical promoted cationic polymerization. Macromolecular Rapid Communications, 33(4), 309-313. http://dx.doi.org/10.1002/marc.201100641. PMid:22253209.

38. Chavda, S., Yusa, S., Inoue, M., Abezgauz, L., Kesselman, E., Danino, D., & Bahadur, P. (2013). Synthesis of stimuli responsive PEG47–b-PAA126–b-PSt32 triblock copolymer and its self-assembly in aqueous solutions. European Polymer Journal, 49(1), 209-216. http://dx.doi.org/10.1016/j.eurpolymj.2012.09.021.

39. Wang, H., Qiao, X., Chen, J., Wang, X., & Ding, S. (2005). Mechanisms of PVP in the preparation of silver nanoparticles. Materials Chemistry and Physics, 94(2-3), 449-453. http://dx.doi.org/10.1016/j.matchemphys.2005.05.005.

40. Noguez, C. (2007). Surface plasmons on metal nanoparticles: the influence of shape and physical environment. The Journal of Physical Chemistry C, 111(10), 3806-3819. http://dx.doi.org/10.1021/jp066539m.

41. Indumathy, R., Sreeram, K. J., Sriranjani, M., Aby, C. P., & Nair, B. U. (2010). Bifunctional role of thiosalicylic acid in the synthesis of silver nanoparticles. Materials Sciences and Applications, 1(05), 272-278. http://dx.doi.org/10.4236/msa.2010.15040.

42. Medina-Ramirez, I., Bashir, S., Luo, Z., & Liu, J. L. (2009). Green synthesis and characterization of polymer-stabilized silver nanoparticles. Colloids and Surfaces. B, Biointerfaces, 73(2), 185-191. http://dx.doi.org/10.1016/j.colsurfb.2009.05.015. PMid:19539451.

43. Lee, J.-M., Jun, Y.-D., Kim, D.-W., Lee, Y.-H., & Oh, S.-G. (2009). Effects of PVP on the formation of silver–polystyrene heterogeneous nanocomposite particles in novel preparation route involving polyol process: Molecular weight and concentration of PVP. Materials Chemistry and Physics, 114(2-3), 549-555. http://dx.doi.org/10.1016/j.matchemphys.2008.10.001.

44. Wiley, B. J., Im, S. H., Li, Z.-Y., McLellan, J., Siekkinen, A., & Xia, Y. (2006). Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. The Journal of Physical Chemistry B, 110(32), 15666-15675. http://dx.doi.org/10.1021/jp0608628. PMid:16898709.

45. Cohen Stuart, M., Fleer, G., & Bijsterbosch, B. (1982). The adsorption of poly(vinyl pyrrolidone) onto silica. I. Adsorbed amount. Journal of Colloid and Interface Science, 90(2), 310-320. http://dx.doi.org/10.1016/0021-9797(82)90300-9.

46. Robinson, S., & Williams, P. A. (2002). Inhibition of protein adsorption onto silica by polyvinylpyrrolidone. Langmuir, 18(23), 8743-8748. http://dx.doi.org/10.1021/la020376l.

47. Costa, C. A. R., Leite, C. A. P., & Galembeck, F. (2006). ESI-TEM imaging of surfactants and ions sorbed in Stöber silica nanoparticles. Langmuir, 22(17), 7159-7166. http://dx.doi.org/10.1021/la060389p. PMid:16893211.

48. Costa, C. A. R., Valadares, L. F., & Galembeck, F. (2007). Stöber silica particle size effect on the hardness and brittleness of silica monoliths. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 302(1-3), 371-376. http://dx.doi.org/10.1016/j.colsurfa.2007.02.061.

49. Van Helden, A. K., Jansen, J. W., & Vrij, A. (1981). Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents. Journal of Colloid and Interface Science, 81(2), 354-368. http://dx.doi.org/10.1016/0021-9797(81)90417-3.

50. Freris, I., Cristofori, D., Riello, P., & Benedetti, A. (2009). Encapsulation of submicrometer-sized silica particles by a thin shell of poly(methyl methacrylate). Journal of Colloid and Interface Science, 331(2), 351-355. http://dx.doi.org/10.1016/j.jcis.2008.11.052. PMid:19081575.
588371d37f8c9d0a0c8b4a9c polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections