Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2059
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Desenvolvimento e caracterização de filmes compósitos de quitosana e zeólitas com prata

Development and characterization of chitosan/silver zeolites composite films

Yassue-Cordeiro, Patricia Hissae; Zandonai, Cassio Henrique; Silva, Classius Ferreira da; Fernandes-Machado, Nádia Regina Carmargo

Downloads: 0
Views: 1110

Resumo

Zeólitas foram submetidas à troca iônica ou impregnação com prata e posteriormente adicionadas em filmes de quitosana para a confecção de curativos para queimaduras. As zeólitas foram avaliadas por Ressonância magnética nuclear (RMN), Fluorescência de raios X por reflexão total (TXRF), Microscopia eletrônica de varredura (MEV). Os filmes poliméricos foram analisados com relação às suas propriedades mecânicas, permeabilidade ao vapor d’água (PVA) e liberação de prata. Observou-se que o procedimento de troca iônica não alterou a morfologia das zeólitas de partida. Grumos de zeólita foram observados nas micrografias dos filmes e estes influenciaram nas propriedades mecânicas devido à desorganizaçao local no empacotamento das cadeiras poliméricas da quitosana. A metodologia de troca iônica ou impregnação influenciou diretamente na quantidade de prata presente superficialmente na zeólita e consequentemente alterou o perfil de liberação de prata em uma solução simulada de exudato de ferida. Os modelos cinéticos sugeriram que a liberação da prata não foi essencialmente regulada pela lei de difusão de Fick.

Palavras-chave

impregnação, troca-iônica, curativos para queimados, zeólita Y.

Abstract

Zeolites were subjected to ion exchange or impregnation with silver and added to chitosan films for producing burns dressings. Zeolites were characterized by nuclear magnetic resonance (NMR), total reflection X-ray fluorescence (TXRF), scanning electron microscopy (SEM). The polymer films were analyzed with respect to their mechanical properties, water vapor permeability (WVP), and release of silver. It was observed that the ion exchange did not modify the morphology of the starting zeolite. Clusters of zeolite were observed in the micrographs of the films and they influenced the mechanical properties due to local disruption in the packing of the polymer chains of chitosan. The methodology of ion exchange or impregnation directly influenced the amount of silver present in the zeolite surface and consequently changed the silver release profile in an of simulated exudate fluid. The kinetic models suggested that the release of the silver was not primarily governed by Fick's law of diffusion.

Keywords

impregnation, ion-exchange, burn dressings, type Y zeolite.

References

1. Fajardo, A. R., Lopes, L. C., Caleare, A. O., Britta, E. A., Nakamura, C. V., Rubira, A. F., & Muniz, E. C. (2013). Silver sulfadiazine loaded chitosan/chondroitin sulfate films for a potential wound dressing application. Materials Science and Engineering C, 33(2), 588-595. http://dx.doi.org/10.1016/j.msec.2012.09.025. PMid:25427460.

2. Ravi, K. (2000). A review of chitin and chitosan applications. Reactive & Functional Polymers, 46(1), 1-27. http://dx.doi.org/10.1016/S1381-5148(00)00038-9.

3. Goy, R. C., Britto, D., & Assis, O. B. G. (2009). A review of the antimicrobial activity of chitosan. Polímeros: Ciência e Tecnologia, 19(3), 241-247.

4. Kurita, K. (1998). Chemistry and application of chitin and chitosan. Polymer Application and Stability, 59(1-3), 117-120. http://dx.doi.org/10.1016/S0141-3910(97)00160-2.

5. Giannetto, P. G., Rendón, A. M., & Fuentes, G. R. (2000). Zeolitas: características, propriedades y aplicaciones industriales (2. ed). Venezuela: Edditorial Innovación Tecnológica, Facultad de Ingeniería, UCV.

6. Kwakye-Awuah, B., Williams, C., Kenward, M. A., & Radecka, I. (2008). Antimicrobial action and efficiency of silver-loaded zeolite X. Journal of Applied Microbiology, 104(5), 1516-1524. http://dx.doi.org/10.1111/j.1365-2672.2007.03673.x. PMid:18179543.

7. Ferreira, L., Fonseca, A. M., Botelho, G., Almeida-Aguiar, C., & Neves, I. C. (2012). Antimicrobial activity of faujasite zeolites doped with silver. Microporous and Mesoporous Materials, 160, 126-132. http://dx.doi.org/10.1016/j.micromeso.2012.05.006.

8. Lalueza, P., Monzón, M., Arruebo, M., & Santamaria, J. (2011). Antibacterial action of Ag-containing MFI zeolite at low Ag loadings. Chemical Communications, 47(2), 680-682. http://dx.doi.org/10.1039/C0CC03905E. PMid:21103583.

9. Boschetto, D. L., Lerin, L., Cansian, R., Pergher, S. B. C., & Di Luccio, M. (2012). Preparation and antimicrobial activity of polyethylene composite films with silver exchanged zeolite-Y. Chemical Engineering Journal, 204-206, 210-216. http://dx.doi.org/10.1016/j.cej.2012.07.111.

10. Pehlivan, H., Balköse, D., Ülkü, S., & Tihminlioğlu, F. (2005). Characterization of pure and silver exchanged natural zeolite filled polypropylene composite films. Composites Science and Technology, 65(13), 2049-2058. http://dx.doi.org/10.1016/j.compscitech.2005.04.011.

11. Silva, C. F., & Fernandes-Machado, N. R. C. (1994). Estudo da troca iônica em zeólita Y. Revista Unimar, 16(3), 463-479.

12. American Society for Testing and Materials – ASTM. (1995). ASTM D-882: tensile properties of thin plastic sheeting. West Conshohocken: ASTM. Annual Book of ASTM Standards.

13. American Society for Testing and Materials – ASTM. (1995). ASTM E96-95: standard test methods of water vapor transmission of materials. West Conshohocken: ASTM.

14. Guisnet, M., & Ribeiro, F. R. (2004). Zeólitos: um nanomundo ao serviço da catálise. Lisboa: Fundação Calouste Gulbekian.

15. Weitkamp, J., & Puppe, L. (1999). Catalysis and zeolites: fundamentals and applications. New York: Springer-Verlag Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-662-03764-5.

16. Guerra, R., Lima, H., Viniegra, M., Guzmán, A., & Lara, V. (2012). Growth of Escherichia coli and Salmonella typhiinhibited by fractal silver nanoparticles supported on zeolites. Microporous and Mesoporous Materials, 147(1), 267-273. http://dx.doi.org/10.1016/j.micromeso.2011.06.031.

17. Lin, L., Zhang, Y., Zhang, H., & Lu, F. (2011). Adsorption and solvent desorption behavior of ion-exchanged modified Y zeolites for sulfur removal and for fuel cell applications. Journal of Colloid and Interface Science, 360(2), 753-759. http://dx.doi.org/10.1016/j.jcis.2011.04.075. PMid:21565351.

18. Fonseca, A. M., & Neves, I. C. (2013). Study of silver species stabilized in different microporous zeolites. Microporous and Mesoporous Materials, 181, 83-87. http://dx.doi.org/10.1016/j.micromeso.2013.07.018.

19. Saint-Cricq, P., Kamimura, Y., Itabashi, K., Sugawara-Narutaki, A., Shimojima, A., & Okubo, T. (2012). Antibacterial activity of silver-loaded “green zeolites”. European Journal of Inorganic Chemistry, 2012(21), 3398-3402. http://dx.doi.org/10.1002/ejic.201200476.

20. Kulprathipanja, S. (2010). Zeolites in industrial separation and catalysis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

21. Garza, R. M., Olguín, M. T., Sosa, I. G., Alcántara, D., & Fuentes, G. R. (2000). Silver supported on natural Mexican zeolite as an antibacterial material. Microporous and Mesoporous Materials, 39(3), 431-444. http://dx.doi.org/10.1016/S1387-1811(00)00217-1.

22. Lalueza, P., Carmona, D., Monzón, M., Arruebo, M., & Santamaría, J. (2012). Strong bactericidal synergy between peracetic acid and silver-exchanged zeolites. Microporous and Mesoporous Materials, 156, 171-175. http://dx.doi.org/10.1016/j.micromeso.2012.02.035.

23. Shi, H., Liu, F., & Xue, L. (2013). Fabrication and characterization of antibacterial PVDF hollowfibre membrane by doping Ag-loaded zeolites. Journal of Membrane Science, 437, 205-215. http://dx.doi.org/10.1016/j.memsci.2013.03.009.

24. Salavati-Niasari, M. (2009). Synthesis and characterization of 18- and 20-membered hexaaza macrocyclescontaining pyridine manganese(II) complex nanoparticles dispersed within nanoreactors of zeolite-Y. Polyhedron, 28(12), 2321-2328. http://dx.doi.org/10.1016/j.poly.2009.04.018.

25. American Society for Testing and Materials – ASTM. (1991). D-3906-80: standard test method for relative zeolite diffraction intensity. West Conshohocken: ASTM.

26. Wani, M. Y., Hasan, N., & Malik, M. A. (2010). Chitosan and aloe vera: two gifts of nature. Journal of Dispersion Science and Technology, 31(6), 799-811. http://dx.doi.org/10.1080/01932690903333606.

27. Wang, G., Ao, Q., Gong, K., Wang, A., Zheng, L., Gong, Y., & Zhang, X. (2010). The effect of topology of chitosan biomaterials on the differentiation and proliferation of neural stem cells. Acta Biomaterialia, 6(9), 3630-3639. http://dx.doi.org/10.1016/j.actbio.2010.03.039. PMid:20371303.

28. Estevam, L. S., Debone, H. S., Yoshida, C. M. P., & Silva, C. F. (2012). Adsorption of bovine serum and bovine haemoglobin onto chitosan film. Adsorption Science and Technology, 30(8-9), 785-792.

29. Wang, J., Zheng, X., Wu, H., Zheng, B., Jiang, Z., Hao, X., & Wang, B. (2008). Effect of zeolites on chitosan/zeolite hybrid membranes for direct methanol fuel cell. Journal of Power Sources, 178(1), 9-19. http://dx.doi.org/10.1016/j.jpowsour.2007.12.063.

30. Wang, Y., Yang, D., Zheng, X., Jiang, Z., & Li, J. (2008). Zeolite beta-filled chitosan membrane with low methanol permeability for direct methanol fuel cell. Journal of Power Sources, 183(2), 454-463. http://dx.doi.org/10.1016/j.jpowsour.2008.06.003.

31. Araújo, P. M. A. G., Santos, P. T. A., Costa, A. C. F. M., & Araújo, E. M. (2012). Obtenção de filmes de quitosana para aplicação em engenharia de tecido. In Anais do 7º Congresso Latino Americano de Órgãos Artificiais e Biomateriais – COLAOB. Natal.

32. Assis, O. B. G., & Silva, V. L. (2003). Caracterização estrutural e da capacidade de absorção de água em filmes finos de quitosana processados em diversas concentrações. Polímeros: Ciência e Tecnologia, 13(4), 223-228.

33. Cui, Z., Xing, W., Liu, C., Liao, J., & Zhang, H. (2009). Chitosan/heteropolyacid composite membranes for direct methanol fuel cell. Journal of Power Sources, 188(1), 24-29. http://dx.doi.org/10.1016/j.jpowsour.2008.11.108.

34. Santos, G. H., Debone, H., Yoshida, C. M. P., Silva, C. F., & Felisbino, R. F. (2012). Avaliação das propriedades mecânicas e de barreira de filmes de quitosana contendo zeólitas para aplicação em curativos. In Anais do XIX Congresso Brasileiro de Engenharia Química. Búzios.

35. Fiori, A. P. S. M., Gabiraba, V. P., Praxedes, A. P. P., Nunes, M. R. S., Balliano, T. L., Silva, R. C., Tonholo, J., & Ribeiro, A. S. (2014). Preparação e caracterização de nanocompósitos poliméricos baseados em quitosana e argilo minerais. Polímeros: Ciência e Tecnologia, 24(5), 628-635. http://dx.doi.org/10.1590/0104-1428.1572.

36. Ruiz-Cardona, L., Sanzgiri, Y. D., Benedetti, L. M., Stella, V. J., & Topp, E. M. (1996). Applicationof benzyl hyaluronate membranes as potential wound dressings: evaluation of water vapour and gas permeabilities. Biomaterials, 17(16), 1639-1643. http://dx.doi.org/10.1016/0142-9612(95)00324-X. PMid:8842370.

37. Yannas, I. V., & Burke, J. F. (1980). Design of an artificial skin Basic design principles. Journal of Biomedical Materials Research, 14(1), 65-81. http://dx.doi.org/10.1002/jbm.820140108. PMid:6987234.

38. Dallan, P. R. M. (2005). Síntese e caracterização de membranas de quitosana para aplicação na regeneração de pele (Tese de doutorado). Faculdade de Engenharia Química, Universidade Estadual de Campinas, Campinas.

39. Wu, Y. B., Yu, S. H., Mi, F. L., Wu, C. W., Shyu, S. S., Peng, C. K., & Chao, A. C. (2004). Preparation and characterization on mechanical and antibacterial properties of chitosana/cellulose blends. Carbohydrate Polymers, 57(4), 435-440. http://dx.doi.org/10.1016/j.carbpol.2004.05.013.

40. Mi, F. L., Shyu, S. S., Wu, Y. B., Lee, S. T., Shyong, J. Y., & Huang, R. N. (2001). Fabrication and characterization of sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials, 22(2), 165-173. http://dx.doi.org/10.1016/S0142-9612(00)00167-8. PMid:11101160.

41. Kim, I. Y., Yoo, M. K., Seo, J. H., Park, S. S., Na, H. S., Lee, H. C., Kim, S. K., & Cho, C. S. (2007). Evaluation of semi-interpenetrating polymer networks composed of chitosan and poloxamer for wound dressing application. International Journal of Pharmaceutics, 341(1-2), 35-43. http://dx.doi.org/10.1016/j.ijpharm.2007.03.042. PMid:17482781.

42. Wang, L., Khor, E., Wee, A., & Lim, L. Y. (2002). Chitosan-alginate PEC membrane as wound dressing: assessment of incisional wound healing. Journal of Biomedical Materials Research, 63(5), 610-618. http://dx.doi.org/10.1002/jbm.10382. PMid:12209908.

43. Remuñán-López, C., & Bodmeier, R. (1997). Mechanical, water uptake and permeability properties of crosslinked chitosan glutamate and alginate films. Journal of Controlled Release, 44(2-3), 215-225. http://dx.doi.org/10.1016/S0168-3659(96)01525-8.

44. Wu, P., Fisher, A. C., Foo, P. P., Queen, D. E., & Gaylor, J. D. S. (1995). In vitro assessment of water vapour transmission of synthetic wound dressings. Biomaterials, 16(3), 171-175. http://dx.doi.org/10.1016/0142-9612(95)92114-L. PMid:7748992.

45. Walker, M., Cochrane, C. A., Bowler, P. G., Parsons, D., & Bradshaw, P. (2006). Silver deposition and tissue staining associated with wound dressings containing silver. Ostomy/Wound Management, 52(1), 42-44. PMid:16464990.

46. Demling, R. H., & Desanti, L. (2001). Effects of silver on wound management. Wounds Supplies. A, 5, 4-15.

47. Matsumura, Y., Yoshikata, K., Kunisaki, S., & Tsuchido, T. (2003). Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Applied and Environmental Microbiology, 69(7), 4278-4281. http://dx.doi.org/10.1128/AEM.69.7.4278-4281.2003. PMid:12839814.

48. Higuchi, T. (1963). Mechanism of sustained-action medication-theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences, 52(12), 1145-1149. http://dx.doi.org/10.1002/jps.2600521210. PMid:14088963.

49. Wagner, J. G. (1969). Interpretation of percent dissolved–time plots derived from in vitro testing of conventional tablets and capsules. Journal of Pharmaceutical Sciences, 58(10), 1253-1257. http://dx.doi.org/10.1002/jps.2600581021. PMid:5349114.

50. Korsmeyer, R. W., Gurny, R., Doelker, E., Buri, P., & Peppas, N. A. (1983). Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics, 15(1), 25-35. http://dx.doi.org/10.1016/0378-5173(83)90064-9.

51. Peppas, N. A., & Sahlin, J. J. (1989). A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. International Journal of Pharmaceutics, 57(2), 169-172. http://dx.doi.org/10.1016/0378-5173(89)90306-2.

52. Lopes, C. M., Lobo, J. M., & Costa, P. (2005). Formas farmacêuticas de liberação modificada: polímeros hidrifílicos. Revista Brasileira de Ciências Farmacêuticas, 41(2), 143-154. http://dx.doi.org/10.1590/S1516-93322005000200003.

53. Costa, P., & Lobo, J. M. S. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13(2), 123-133. http://dx.doi.org/10.1016/S0928-0987(01)00095-1. PMid:11297896.

54. Balcerzak, J., & Mucha, M. (2010). Analysis of model drug release kinetics from complex matrices of polylactide-chitosan. Progress on Chemistry and Application of Chitin and its Derivatives, 15, 117-125.

55. Peppas, N. A. (1985). Analysis of fickian and non-fickian drug release from polymers. Pharmaceutica Acta Helvetiae, 60(4), 110-111. PMid:4011621.

56. Agnihotri, S. A., & Aminabhavi, T. M. (2004). Controlled release of clozapine through chitosan microparticles prepared by a novel method. Journal of Controlled Release, 96(2), 245-259. http://dx.doi.org/10.1016/j.jconrel.2004.01.025. PMid:15081216.

57. Ravindra, S., Mohan, Y. M., Reddy, N. N., & Raju, K. M. (2010). Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green Approach”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 367(1-3), 31-40. http://dx.doi.org/10.1016/j.colsurfa.2010.06.013.

58. Huang, H., Yuan, Q., & Yang, X. (2004). Preparation and characterization of metal-chitosan nanocomposites. Colloids and Surfaces B: Biointerfaces, 39(1-2), 31-37. http://dx.doi.org/10.1016/j.colsurfb.2004.08.014. PMid:15542337.

59. Hebeish, A., El-Shafei, A., Sharaf, S., & Zaghloul, S. (2011). Novel precursors for green synthesis and application of silver nanoparticles in the realm of cotton finishing. Carbohydrate Polymers, 84(1), 605-613. http://dx.doi.org/10.1016/j.carbpol.2010.12.032.

60. Moharram, M. A., Khalil, S. K. H., Sherif, H. H. A., & Khalil, W. A. (2014). Spectroscopic study of the experimental parameters controlling the structural properties of chitosan-Ag nanoparticles composite. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 126, 1-6. http://dx.doi.org/10.1016/j.saa.2014.01.099. PMid:24568845.

61. Lee, H. J., & Jeong, S. H. (2005). Bacteriostasis and skin innoxiousness of nanosize silver colloids. Textile Research Journal, 75(7), 551-556. http://dx.doi.org/10.1177/0040517505053952.

62. Hossain, F., Perales-Perez, O. J., Hwang, S., & Román, F. (2014). Antimicrobial nanomaterials as water disinfectant : applications, limitations and future perspectives. The Science of the Total Environment, 466-467, 1047-1059. http://dx.doi.org/10.1016/j.scitotenv.2013.08.009. PMid:23994736.
588371c87f8c9d0a0c8b4a6c polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections